Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 66

1.

Genome-wide association studies in plants: the missing heritability is in the field.

Brachi B, Morris GP, Borevitz JO.

Genome Biol. 2011 Oct 28;12(10):232. doi: 10.1186/gb-2011-12-10-232. Review.

2.

Epigenetic Changes in Hybrids.

Greaves IK, Gonzalez-Bayon R, Wang L, Zhu A, Liu PC, Groszmann M, Peacock WJ, Dennis ES.

Plant Physiol. 2015 Aug;168(4):1197-205. doi: 10.1104/pp.15.00231. Epub 2015 May 22. Review.

3.

Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis.

Kooke R, Kruijer W, Bours R, Becker F, Kuhn A, van de Geest H, Buntjer J, Doeswijk T, Guerra J, Bouwmeester H, Vreugdenhil D, Keurentjes JJ.

Plant Physiol. 2016 Apr;170(4):2187-203. doi: 10.1104/pp.15.00997. Epub 2016 Feb 11.

4.

Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations.

Li K, Yan J, Li J, Yang X.

BMC Plant Biol. 2014 Jun 3;14:152. doi: 10.1186/1471-2229-14-152.

5.

A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis.

Lloyd J, Meinke D.

Plant Physiol. 2012 Mar;158(3):1115-29. doi: 10.1104/pp.111.192393. Epub 2012 Jan 13.

6.

Genetic architecture of regulatory variation in Arabidopsis thaliana.

Zhang X, Cal AJ, Borevitz JO.

Genome Res. 2011 May;21(5):725-33. doi: 10.1101/gr.115337.110. Epub 2011 Apr 5.

7.

The genetic architecture of maize flowering time.

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Sanchez Villeda H, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD.

Science. 2009 Aug 7;325(5941):714-8. doi: 10.1126/science.1174276.

8.

Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm.

Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM.

Plant Cell. 2011 Dec;23(12):4221-33. doi: 10.1105/tpc.111.092668. Epub 2011 Dec 23.

9.

Genetic properties of the maize nested association mapping population.

McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES.

Science. 2009 Aug 7;325(5941):737-40. doi: 10.1126/science.1174320.

10.

Genome-wide association study (GWAS) of resistance to head smut in maize.

Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y.

Plant Sci. 2012 Nov;196:125-31. doi: 10.1016/j.plantsci.2012.08.004. Epub 2012 Aug 14.

PMID:
23017907
11.

Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana.

Bergelson J, Roux F.

Nat Rev Genet. 2010 Dec;11(12):867-79. doi: 10.1038/nrg2896. Review.

PMID:
21085205
12.

Flowering time in maize: linkage and epistasis at a major effect locus.

Durand E, Bouchet S, Bertin P, Ressayre A, Jamin P, Charcosset A, Dillmann C, Tenaillon MI.

Genetics. 2012 Apr;190(4):1547-62. doi: 10.1534/genetics.111.136903. Epub 2012 Jan 31.

13.

Darwinian selection on a selfing locus.

Shimizu KK, Cork JM, Caicedo AL, Mays CA, Moore RC, Olsen KM, Ruzsa S, Coop G, Bustamante CD, Awadalla P, Purugganan MD.

Science. 2004 Dec 17;306(5704):2081-4. Retraction in: Shimizu KK, Reininga JM, Caicedo AL, Mays CA, Moore RC, Olsen KM, Ruzsa S, Coop G, Bustamante CD, Purugganan MD. Science. 2008 Apr 11;320(5873):176.

14.

ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize.

Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF, Holland JB.

Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1913-21. doi: 10.1073/pnas.1203189109. Epub 2012 Jun 18.

15.

A study of allelic diversity underlying flowering-time adaptation in maize landraces.

Romero Navarro JA, Willcox M, BurgueƱo J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V, Ortega A, Banda AE, Montiel NO, Ortiz-Monasterio I, Vicente FS, Espinoza AG, Atlin G, Wenzl P, Hearne S, Buckler ES.

Nat Genet. 2017 Mar;49(3):476-480. doi: 10.1038/ng.3784. Epub 2017 Feb 6. Erratum in: Nat Genet. 2017 May 26;49(6):970.

PMID:
28166212
16.

A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize.

Xing A, Gao Y, Ye L, Zhang W, Cai L, Ching A, Llaca V, Johnson B, Liu L, Yang X, Kang D, Yan J, Li J.

J Exp Bot. 2015 Jul;66(13):3791-802. doi: 10.1093/jxb/erv182. Epub 2015 Apr 28.

17.

Natural variation at sympathy for the ligule controls penetrance of the semidominant Liguleless narrow-R mutation in Zea mays.

Buescher EM, Moon J, Runkel A, Hake S, Dilkes BP.

G3 (Bethesda). 2014 Oct 24;4(12):2297-306. doi: 10.1534/g3.114.014183.

18.

Efficient control of population structure in model organism association mapping.

Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E.

Genetics. 2008 Mar;178(3):1709-23. doi: 10.1534/genetics.107.080101.

19.

Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines.

Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X.

PLoS One. 2011;6(12):e29229. doi: 10.1371/journal.pone.0029229. Epub 2011 Dec 28.

20.

Dissecting tocopherols content in maize (Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers.

Shutu X, Dalong Z, Ye C, Yi Z, Shah T, Ali F, Qing L, Zhigang L, Weidong W, Jiansheng L, Xiaohong Y, Jianbing Y.

BMC Plant Biol. 2012 Nov 2;12:201. doi: 10.1186/1471-2229-12-201.

Supplemental Content

Support Center