Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling.

Agnew AJ, Robinson E, McVicar CM, Harvey AP, Ali IH, Lindsay JE, McDonald DM, Green BD, Grieve DJ.

Br J Pharmacol. 2012 May;166(1):327-38. doi: 10.1111/j.1476-5381.2011.01761.x.

2.

Endothelium-dependent nitric oxide and hyperpolarization-mediated venous relaxation pathways in rat inferior vena cava.

Raffetto JD, Yu P, Reslan OM, Xia Y, Khalil RA.

J Vasc Surg. 2012 Jun;55(6):1716-25. doi: 10.1016/j.jvs.2011.10.124. Epub 2011 Dec 30.

3.
4.

Vasorelaxing effects of propranolol in rat aorta and mesenteric artery: a role for nitric oxide and calcium entry blockade.

Priviero FB, Teixeira CE, Toque HA, Claudino MA, Webb RC, De Nucci G, Zanesco A, Antunes E.

Clin Exp Pharmacol Physiol. 2006 May-Jun;33(5-6):448-55.

PMID:
16700877
5.

Estrogen receptor subtypes mediate distinct microvascular dilation and reduction in [Ca2+]I in mesenteric microvessels of female rat.

Mazzuca MQ, Mata KM, Li W, Rangan SS, Khalil RA.

J Pharmacol Exp Ther. 2015 Feb;352(2):291-304. doi: 10.1124/jpet.114.219865. Epub 2014 Dec 3.

6.

Ethanol induces vascular relaxation via redox-sensitive and nitric oxide-dependent pathways.

Rocha JT, Hipólito UV, Callera GE, Yogi A, Neto Filho Mdos A, Bendhack LM, Touyz RM, Tirapelli CR.

Vascul Pharmacol. 2012 Jan-Feb;56(1-2):74-83. doi: 10.1016/j.vph.2011.11.006. Epub 2011 Dec 3.

7.

TRPV4 channel activation leads to endothelium-dependent relaxation mediated by nitric oxide and endothelium-derived hyperpolarizing factor in rat pulmonary artery.

Sukumaran SV, Singh TU, Parida S, Narasimha Reddy ChE, Thangamalai R, Kandasamy K, Singh V, Mishra SK.

Pharmacol Res. 2013 Dec;78:18-27. doi: 10.1016/j.phrs.2013.09.005. Epub 2013 Sep 25.

PMID:
24075884
8.

Sodium nitrite causes relaxation of the isolated rat aorta: By stimulating both endothelial NO synthase and activating soluble guanylyl cyclase in vascular smooth muscle.

Ling WC, Lau YS, Murugan DD, Vanhoutte PM, Mustafa MR.

Vascul Pharmacol. 2015 Nov;74:87-92. doi: 10.1016/j.vph.2015.05.014. Epub 2015 Jun 2.

PMID:
26044183
9.

Notoginsenoside Ft1 activates both glucocorticoid and estrogen receptors to induce endothelium-dependent, nitric oxide-mediated relaxations in rat mesenteric arteries.

Shen K, Leung SW, Ji L, Huang Y, Hou M, Xu A, Wang Z, Vanhoutte PM.

Biochem Pharmacol. 2014 Mar 1;88(1):66-74. doi: 10.1016/j.bcp.2014.01.007. Epub 2014 Jan 16.

PMID:
24440742
10.

Ferulic acid relaxed rat aortic, small mesenteric and coronary arteries by blocking voltage-gated calcium channel and calcium desensitization via dephosphorylation of ERK1/2 and MYPT1.

Zhou ZY, Xu JQ, Zhao WR, Chen XL, Jin Y, Tang N, Tang JY.

Eur J Pharmacol. 2017 Nov 15;815:26-32. doi: 10.1016/j.ejphar.2017.10.008. Epub 2017 Oct 6.

PMID:
28989085
11.

Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat.

Stankevicius E, Dalsgaard T, Kroigaard C, Beck L, Boedtkjer E, Misfeldt MW, Nielsen G, Schjorring O, Hughes A, Simonsen U.

J Pharmacol Exp Ther. 2011 Dec;339(3):842-50. doi: 10.1124/jpet.111.179242. Epub 2011 Aug 31.

PMID:
21880870
12.

Vascular relaxation induced by C-type natriuretic peptide involves the ca2+/NO-synthase/NO pathway.

Andrade FA, Restini CB, Grando MD, Ramalho LN, Bendhack LM.

PLoS One. 2014 May 1;9(5):e95446. doi: 10.1371/journal.pone.0095446. eCollection 2014.

13.

Nuciferine relaxes rat mesenteric arteries through endothelium-dependent and -independent mechanisms.

Wang X, Cheang WS, Yang H, Xiao L, Lai B, Zhang M, Ni J, Luo Z, Zhang Z, Huang Y, Wang N.

Br J Pharmacol. 2015 Dec;172(23):5609-18. doi: 10.1111/bph.13021. Epub 2015 Jan 23.

14.

NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation.

Santos SS, Jesus RLC, Simões LO, Vasconcelos WP, Medeiros IA, Veras RC, Casais-E-Silva LL, Silva DF.

Toxicon. 2017 Jul;133:10-17. doi: 10.1016/j.toxicon.2017.04.010. Epub 2017 Apr 18.

PMID:
28428070
15.

Impairment of both nitric oxide-mediated and EDHF-type relaxation in small mesenteric arteries from rats with streptozotocin-induced diabetes.

Leo CH, Hart JL, Woodman OL.

Br J Pharmacol. 2011 Jan;162(2):365-77. doi: 10.1111/j.1476-5381.2010.01023.x.

16.

Endothelium-Dependent Relaxation Effect of Apocynum venetum Leaf Extract via Src/PI3K/Akt Signalling Pathway.

Lau YS, Ling WC, Murugan D, Kwan CY, Mustafa MR.

Nutrients. 2015 Jun 30;7(7):5239-53. doi: 10.3390/nu7075220.

17.

Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries.

Pourageaud F, Bappel-Gozalbes C, Marthan R, Freslon JL.

Br J Pharmacol. 2000 Nov;131(6):1211-9.

18.

The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed.

Pimentel AM, Costa CA, Carvalho LC, Brandão RM, Rangel BM, Tano T, Soares de Moura R, Resende AC.

Vascul Pharmacol. 2007 May;46(5):353-9. Epub 2006 Dec 20.

PMID:
17258511
19.

Differential mechanisms for insulin-induced relaxations in mouse posterior tibial arteries and main mesenteric arteries.

Qu D, Liu J, Lau CW, Huang Y.

Vascul Pharmacol. 2014 Dec;63(3):173-7. doi: 10.1016/j.vph.2014.08.004. Epub 2014 Oct 14.

PMID:
25446161
20.

Supplemental Content

Support Center