Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 536

1.

Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease.

Stubbs JR, He N, Idiculla A, Gillihan R, Liu S, David V, Hong Y, Quarles LD.

J Bone Miner Res. 2012 Jan;27(1):38-46. doi: 10.1002/jbmr.516.

2.

Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease.

Zhang S, Gillihan R, He N, Fields T, Liu S, Green T, Stubbs JR.

Kidney Int. 2013 Oct;84(4):713-21. doi: 10.1038/ki.2013.194. Epub 2013 May 22.

3.

A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model.

Dai B, David V, Martin A, Huang J, Li H, Jiao Y, Gu W, Quarles LD.

PLoS One. 2012;7(9):e44161. doi: 10.1371/journal.pone.0044161. Epub 2012 Sep 6.

4.

Mutant FGF23 prevents the progression of chronic kidney disease but aggravates renal osteodystrophy in uremic rats.

Kusano K, Saito H, Segawa H, Fukushima N, Miyamoto K.

J Nutr Sci Vitaminol (Tokyo). 2009 Apr;55(2):99-105.

6.

Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease.

Quarles LD.

Exp Cell Res. 2012 May 15;318(9):1040-8. doi: 10.1016/j.yexcr.2012.02.027. Epub 2012 Mar 7. Review.

7.

Reduced renal α-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism.

Sakan H, Nakatani K, Asai O, Imura A, Tanaka T, Yoshimoto S, Iwamoto N, Kurumatani N, Iwano M, Nabeshima Y, Konishi N, Saito Y.

PLoS One. 2014 Jan 23;9(1):e86301. doi: 10.1371/journal.pone.0086301. eCollection 2014.

8.

FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality.

Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, Renshaw L, Hawkins N, Wang W, Chen C, Tsai MM, Cattley RC, Wronski TJ, Xia X, Li X, Henley C, Eschenberg M, Richards WG.

J Clin Invest. 2012 Jul;122(7):2543-53. doi: 10.1172/JCI61405. Epub 2012 Jun 25.

9.
10.

Parathyroid function in chronic kidney disease: role of FGF23-Klotho axis.

Koizumi M, Komaba H, Fukagawa M.

Contrib Nephrol. 2013;180:110-23. doi: 10.1159/000346791. Epub 2013 May 3. Review.

PMID:
23652554
11.

Assessment of 24,25(OH)2D levels does not support FGF23-mediated catabolism of vitamin D metabolites.

Dai B, David V, Alshayeb HM, Showkat A, Gyamlani G, Horst RL, Wall BM, Quarles LD.

Kidney Int. 2012 Nov;82(10):1061-70. doi: 10.1038/ki.2012.222. Epub 2012 Jun 27.

12.

[Changes in mineral metabolism in stage 3, 4, and 5 chronic kidney disease (not on dialysis)].

Lorenzo Sellares V, Torregrosa V.

Nefrologia. 2008;28 Suppl 3:67-78. Spanish.

13.

Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production.

David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, Zumbrennen-Bullough KB, Sun CC, Lin HY, Babitt JL, Wolf M.

Kidney Int. 2016 Jan;89(1):135-46. doi: 10.1038/ki.2015.290. Epub 2016 Jan 4.

14.

Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease.

Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto S, Shimada T.

Kidney Int. 2010 Nov;78(10):975-80. doi: 10.1038/ki.2010.313. Epub 2010 Sep 15.

15.

Targeted deletion of Klotho in kidney distal tubule disrupts mineral metabolism.

Olauson H, Lindberg K, Amin R, Jia T, Wernerson A, Andersson G, Larsson TE.

J Am Soc Nephrol. 2012 Oct;23(10):1641-51. Epub 2012 Aug 9.

16.

Effect of manipulating serum phosphorus with phosphate binder on circulating PTH and FGF23 in renal failure rats.

Nagano N, Miyata S, Abe M, Kobayashi N, Wakita S, Yamashita T, Wada M.

Kidney Int. 2006 Feb;69(3):531-7.

17.

Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study.

Pavik I, Jaeger P, Ebner L, Wagner CA, Petzold K, Spichtig D, Poster D, Wüthrich RP, Russmann S, Serra AL.

Nephrol Dial Transplant. 2013 Feb;28(2):352-9. doi: 10.1093/ndt/gfs460. Epub 2012 Nov 4.

18.

The osteocyte in CKD: new concepts regarding the role of FGF23 in mineral metabolism and systemic complications.

Wesseling-Perry K, Jüppner H.

Bone. 2013 Jun;54(2):222-9. doi: 10.1016/j.bone.2012.10.008. Epub 2012 Oct 16. Review.

19.

The pathophysiology of early-stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders in the rat.

Moe SM, Radcliffe JS, White KE, Gattone VH 2nd, Seifert MF, Chen X, Aldridge B, Chen NX.

J Bone Miner Res. 2011 Nov;26(11):2672-81. doi: 10.1002/jbmr.485.

20.

Assessment of tubular reabsorption of phosphate as a surrogate marker for phosphate regulation in chronic kidney disease.

Hong YA, Lim JH, Kim MY, Kim Y, Yang KS, Chung BH, Chung S, Choi BS, Yang CW, Kim YS, Chang YS, Park CW.

Clin Exp Nephrol. 2015 Apr;19(2):208-15. doi: 10.1007/s10157-014-0962-5. Epub 2014 Apr 1.

PMID:
24682550

Supplemental Content

Support Center