Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Common genetic variants are associated with accelerated bone mineral density loss after hematopoietic cell transplantation.

Yao S, Sucheston LE, Smiley SL, Davis W, Conroy JM, Nowak NJ, Ambrosone CB, McCarthy PL Jr, Hahn T.

PLoS One. 2011;6(10):e25940. doi: 10.1371/journal.pone.0025940. Epub 2011 Oct 14.

2.

Accelerated bone mineral density loss occurs with similar incidence and severity, but with different risk factors, after autologous versus allogeneic hematopoietic cell transplantation.

Yao S, Smiley SL, West K, Lamonica D, Battiwalla M, McCarthy PL Jr, Hahn T.

Biol Blood Marrow Transplant. 2010 Aug;16(8):1130-7. doi: 10.1016/j.bbmt.2010.02.017. Epub 2010 Feb 24.

3.

Association of genetic polymorphisms of RANK, RANKL and OPG with bone mineral density in Chinese peri- and postmenopausal women.

Shang M, Lin L, Cui H.

Clin Biochem. 2013 Oct;46(15):1493-501. doi: 10.1016/j.clinbiochem.2013.03.011. Epub 2013 Mar 24.

PMID:
23531404
4.

Genetic variants in adult bone mineral density and fracture risk genes are associated with the rate of bone mineral density acquisition in adolescence.

Warrington NM, Kemp JP, Tilling K, Tobias JH, Evans DM.

Hum Mol Genet. 2015 Jul 15;24(14):4158-66. doi: 10.1093/hmg/ddv143. Epub 2015 May 4.

5.

Contributions of Caucasian-associated bone mass loci to the variation in bone mineral density in Vietnamese population.

Ho-Pham LT, Nguyen SC, Tran B, Nguyen TV.

Bone. 2015 Jul;76:18-22. doi: 10.1016/j.bone.2015.03.003. Epub 2015 Mar 11.

PMID:
25771420
6.
7.

Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women.

Koller DL, Zheng HF, Karasik D, Yerges-Armstrong L, Liu CT, McGuigan F, Kemp JP, Giroux S, Lai D, Edenberg HJ, Peacock M, Czerwinski SA, Choh AC, McMahon G, St Pourcain B, Timpson NJ, Lawlor DA, Evans DM, Towne B, Blangero J, Carless MA, Kammerer C, Goltzman D, Kovacs CS, Prior JC, Spector TD, Rousseau F, Tobias JH, Akesson K, Econs MJ, Mitchell BD, Richards JB, Kiel DP, Foroud T.

J Bone Miner Res. 2013 Mar;28(3):547-58. doi: 10.1002/jbmr.1796.

8.

Genome-wide association meta-analysis of cortical bone mineral density unravels allelic heterogeneity at the RANKL locus and potential pleiotropic effects on bone.

Paternoster L, Lorentzon M, Vandenput L, Karlsson MK, Ljunggren O, Kindmark A, Mellstrom D, Kemp JP, Jarett CE, Holly JM, Sayers A, St Pourcain B, Timpson NJ, Deloukas P, Davey Smith G, Ring SM, Evans DM, Tobias JH, Ohlsson C.

PLoS Genet. 2010 Nov 18;6(11):e1001217. doi: 10.1371/journal.pgen.1001217.

9.

Conditional testing of multiple variants associated with bone mineral density in the FLNB gene region suggests that they represent a single association signal.

Mullin BH, Mamotte C, Prince RL, Spector TD, Dudbridge F, Wilson SG.

BMC Genet. 2013 Oct 31;14:107. doi: 10.1186/1471-2156-14-107.

10.

"Single nucleotide polymorphisms of the OPG/RANKL system genes in primary hyperparathyroidism and their relationship with bone mineral density".

Piedra M, García-Unzueta MT, Berja A, Paule B, Lavín BA, Valero C, Riancho JA, Amado JA.

BMC Med Genet. 2011 Dec 20;12:168. doi: 10.1186/1471-2350-12-168.

11.

SIBLING family genes and bone mineral density: association and allele-specific expression in humans.

Alam I, Padgett LR, Ichikawa S, Alkhouli M, Koller DL, Lai D, Peacock M, Xuei X, Foroud T, Edenberg HJ, Econs MJ.

Bone. 2014 Jul;64:166-72. doi: 10.1016/j.bone.2014.04.013. Epub 2014 Apr 18.

12.

Replication of previous genome-wide association studies of bone mineral density in premenopausal American women.

Ichikawa S, Koller DL, Padgett LR, Lai D, Hui SL, Peacock M, Foroud T, Econs MJ.

J Bone Miner Res. 2010 Aug;25(8):1821-9. doi: 10.1002/jbmr.62.

13.

The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study.

Panach L, Pineda B, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ.

Bone. 2016 Feb;83:94-103. doi: 10.1016/j.bone.2015.11.002. Epub 2015 Nov 8.

PMID:
26545336
14.

Genome-wide association with bone mass and geometry in the Framingham Heart Study.

Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D.

BMC Med Genet. 2007 Sep 19;8 Suppl 1:S14.

15.

Mechanisms of bone loss following allogeneic and autologous hemopoietic stem cell transplantation.

Ebeling PR, Thomas DM, Erbas B, Hopper JL, Szer J, Grigg AP.

J Bone Miner Res. 1999 Mar;14(3):342-50.

16.

Influence of IL-6, COL1A1, and VDR gene polymorphisms on bone mineral density in Crohn's disease.

Todhunter CE, Sutherland-Craggs A, Bartram SA, Donaldson PT, Daly AK, Francis RM, Mansfield JC, Thompson NP.

Gut. 2005 Nov;54(11):1579-84. Epub 2005 Jul 11.

17.

Association of the A1330V and V667M polymorphisms of LRP5 with bone mineral density in Greek peri- and postmenopausal women.

Markatseli AE, Hatzi E, Bouba I, Georgiou I, Challa A, Tigas S, Tsatsoulis A.

Maturitas. 2011 Oct;70(2):188-93. doi: 10.1016/j.maturitas.2011.07.016. Epub 2011 Aug 15.

PMID:
21840657
18.

Bone mineral deficits in recipients of hematopoietic cell transplantation: the impact of young age at transplant.

Petryk A, Polgreen LE, Zhang L, Hodges JS, Dengel DR, Hoffmeister PA, Steinberger J, Baker KS.

Bone Marrow Transplant. 2014 Feb;49(2):258-63. doi: 10.1038/bmt.2013.156. Epub 2013 Oct 14.

19.

Characterization of common genetic variants in cathepsin K and testing for association with bone mineral density in a large cohort of perimenopausal women from Scotland.

Giraudeau FS, McGinnis RE, Gray IC, O'Brien EJ, Doncaster KE, Spurr NK, Ralston SH, Reid DM, Wood J.

J Bone Miner Res. 2004 Jan;19(1):31-41.

20.

CYP2C9 genotype and association with bone mineral density: a pilot study.

Brunner-Ziegler S, Giurgea GA, Sunder-Plassmann R, Hammer A, Margeta C, Brunner M, Koppensteiner R, Mannhalter C.

Gene. 2013 Sep 10;526(2):295-8. doi: 10.1016/j.gene.2013.05.026. Epub 2013 May 31.

PMID:
23732294

Supplemental Content

Support Center