Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

Tolerogen-induced interferon-producing killer dendritic cells (IKDCs) protect against EAE.

Huarte E, Rynda-Apple A, Riccardi C, Skyberg JA, Golden S, Rollins MF, Ramstead AG, Jackiw LO, Maddaloni M, Pascual DW.

J Autoimmun. 2011 Dec;37(4):328-41. doi: 10.1016/j.jaut.2011.09.005. Epub 2011 Oct 22.

2.

Active immunization using a single dose immunotherapeutic abates established EAE via IL-10 and regulatory T cells.

Rynda-Apple A, Huarte E, Maddaloni M, Callis G, Skyberg JA, Pascual DW.

Eur J Immunol. 2011 Feb;41(2):313-23. doi: 10.1002/eji.201041104. Epub 2010 Dec 29.

4.
5.

T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis.

Zheng H, Zhang H, Liu F, Qi Y, Jiang H.

Immunol Lett. 2014 Jan-Feb;157(1-2):38-44. doi: 10.1016/j.imlet.2013.11.001. Epub 2013 Nov 9.

PMID:
24220208
6.

Regulatory T Cell Dysfunction Acquiesces to BTLA+ Regulatory B Cells Subsequent to Oral Intervention in Experimental Autoimmune Encephalomyelitis.

Huarte E, Jun S, Rynda-Apple A, Golden S, Jackiw L, Hoffman C, Maddaloni M, Pascual DW.

J Immunol. 2016 Jun 15;196(12):5036-46. doi: 10.4049/jimmunol.1501973. Epub 2016 May 18.

PMID:
27194787
7.

A distinct role of CD4+ Th17- and Th17-stimulated CD8+ CTL in the pathogenesis of type 1 diabetes and experimental autoimmune encephalomyelitis.

Ankathatti Munegowda M, Deng Y, Chibbar R, Xu Q, Freywald A, Mulligan SJ, van Drunen Littel-van den Hurk S, Sun D, Xiong S, Xiang J.

J Clin Immunol. 2011 Oct;31(5):811-26. doi: 10.1007/s10875-011-9549-z. Epub 2011 Jun 15.

8.

Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis.

Tseveleki V, Tselios T, Kanistras I, Koutsoni O, Karamita M, Vamvakas SS, Apostolopoulos V, Dotsika E, Matsoukas J, Lassmann H, Probert L.

Exp Neurol. 2015 May;267:254-67. doi: 10.1016/j.expneurol.2014.10.019. Epub 2014 Oct 30.

PMID:
25447934
9.

CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells.

Vosshenrich CA, Lesjean-Pottier S, Hasan M, Richard-Le Goff O, Corcuff E, Mandelboim O, Di Santo JP.

J Exp Med. 2007 Oct 29;204(11):2569-78. Epub 2007 Oct 8.

10.

CD11c+CD11b+ dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis.

Li H, Zhang GX, Chen Y, Xu H, Fitzgerald DC, Zhao Z, Rostami A.

J Immunol. 2008 Aug 15;181(4):2483-93.

11.

Targeting of autoantigens to DEC205⁺ dendritic cells in vivo suppresses experimental allergic encephalomyelitis in mice.

Ring S, Maas M, Nettelbeck DM, Enk AH, Mahnke K.

J Immunol. 2013 Sep 15;191(6):2938-47. doi: 10.4049/jimmunol.1202592. Epub 2013 Aug 14.

12.

On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity.

Legge KL, Gregg RK, Maldonado-Lopez R, Li L, Caprio JC, Moser M, Zaghouani H.

J Exp Med. 2002 Jul 15;196(2):217-27.

13.

Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells.

Caminschi I, Ahmet F, Heger K, Brady J, Nutt SL, Vremec D, Pietersz S, Lahoud MH, Schofield L, Hansen DS, O'Keeffe M, Smyth MJ, Bedoui S, Davey GM, Villadangos JA, Heath WR, Shortman K.

J Exp Med. 2007 Oct 29;204(11):2579-90. Epub 2007 Oct 8.

14.

Role of pathogenic T cells and autoantibodies in relapse and progression of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in LEW.1AV1 rats.

Matsumoto Y, Park IK, Hiraki K, Ohtani S, Kohyama K.

Immunology. 2009 Sep;128(1 Suppl):e250-61. doi: 10.1111/j.1365-2567.2008.02955.x. Epub 2008 Oct 29.

15.

A novel nanoparticle containing MOG peptide with BTLA induces T cell tolerance and prevents multiple sclerosis.

Yuan B, Zhao L, Fu F, Liu Y, Lin C, Wu X, Shen H, Yang Z.

Mol Immunol. 2014 Feb;57(2):93-9. doi: 10.1016/j.molimm.2013.08.006. Epub 2013 Sep 28.

PMID:
24084097
16.

Reprogrammed quiescent B cells provide an effective cellular therapy against chronic experimental autoimmune encephalomyelitis.

Calderón-Gómez E, Lampropoulou V, Shen P, Neves P, Roch T, Stervbo U, Rutz S, Kühl AA, Heppner FL, Loddenkemper C, Anderton SM, Kanellopoulos JM, Charneau P, Fillatreau S.

Eur J Immunol. 2011 Jun;41(6):1696-708. doi: 10.1002/eji.201041041. Epub 2011 May 25.

17.

Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis.

Matsushita T, Horikawa M, Iwata Y, Tedder TF.

J Immunol. 2010 Aug 15;185(4):2240-52. doi: 10.4049/jimmunol.1001307. Epub 2010 Jul 12.

18.

Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells.

Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T.

J Exp Med. 1997 Nov 17;186(10):1677-87.

19.

Exosomes with membrane-associated TGF-β1 from gene-modified dendritic cells inhibit murine EAE independently of MHC restriction.

Yu L, Yang F, Jiang L, Chen Y, Wang K, Xu F, Wei Y, Cao X, Wang J, Cai Z.

Eur J Immunol. 2013 Sep;43(9):2461-72. doi: 10.1002/eji.201243295. Epub 2013 Jun 21.

20.

In vivo regulation of experimental autoimmune encephalomyelitis by NK cells: alteration of primary adaptive responses.

Winkler-Pickett R, Young HA, Cherry JM, Diehl J, Wine J, Back T, Bere WE, Mason AT, Ortaldo JR.

J Immunol. 2008 Apr 1;180(7):4495-506.

Supplemental Content

Support Center