Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 270

1.

Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum.

Lindner SN, Seibold GM, Krämer R, Wendisch VF.

Bioeng Bugs. 2011 Sep-Oct;2(5):291-5. doi: 10.4161/bbug.2.5.17116. Epub 2011 Sep 1.

PMID:
22008639
2.

Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.

Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S.

Appl Microbiol Biotechnol. 2011 May;90(4):1443-51. doi: 10.1007/s00253-011-3210-x. Epub 2011 Mar 31.

PMID:
21452034
3.

Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.

Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF.

Appl Environ Microbiol. 2011 Jun;77(11):3571-81. doi: 10.1128/AEM.02713-10. Epub 2011 Apr 8.

4.

A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833.

Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S.

Appl Microbiol Biotechnol. 2015 Mar;99(6):2741-50. doi: 10.1007/s00253-014-6323-1. Epub 2014 Dec 31.

PMID:
25549619
5.

Sugar transport systems in Corynebacterium glutamicum: features and applications to strain development.

Ikeda M.

Appl Microbiol Biotechnol. 2012 Dec;96(5):1191-200. doi: 10.1007/s00253-012-4488-z. Epub 2012 Oct 19. Review.

PMID:
23081775
6.

Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant.

Zhou Z, Wang C, Xu H, Chen Z, Cai H.

J Ind Microbiol Biotechnol. 2015 Jul;42(7):1073-82. doi: 10.1007/s10295-015-1630-9. Epub 2015 May 8.

PMID:
25952119
7.

The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation.

Moon MW, Park SY, Choi SK, Lee JK.

J Mol Microbiol Biotechnol. 2007;12(1-2):43-50. Review.

PMID:
17183210
8.
9.

Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.

Pérez-García F, Peters-Wendisch P, Wendisch VF.

Appl Microbiol Biotechnol. 2016 Sep;100(18):8075-90. doi: 10.1007/s00253-016-7682-6. Epub 2016 Jun 27.

PMID:
27345060
10.

Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.

Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM.

Appl Environ Microbiol. 2013 Apr;79(8):2588-95. doi: 10.1128/AEM.03231-12. Epub 2013 Feb 8.

11.

Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose.

Sasaki M, Teramoto H, Inui M, Yukawa H.

Appl Microbiol Biotechnol. 2011 Mar;89(6):1905-16. doi: 10.1007/s00253-010-3002-8. Epub 2010 Dec 2.

PMID:
21125267
12.

Identification of a second beta-glucoside phosphoenolpyruvate: carbohydrate phosphotransferase system in Corynebacterium glutamicum R.

Tanaka Y, Teramoto H, Inui M, Yukawa H.

Microbiology. 2009 Nov;155(Pt 11):3652-60. doi: 10.1099/mic.0.029496-0. Epub 2009 Jul 23.

PMID:
19628558
13.

Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum.

Kuhlmann N, Petrov DP, Henrich AW, Lindner SN, Wendisch VF, Seibold GM.

Microbiology. 2015 Sep;161(9):1830-43. doi: 10.1099/mic.0.000134. Epub 2015 Jul 9.

PMID:
26296766
14.

Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.

Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM.

J Bacteriol. 2013 Jun;195(11):2573-84. doi: 10.1128/JB.01629-12. Epub 2013 Mar 29.

15.

Regulation of the expression of phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum R.

Tanaka Y, Okai N, Teramoto H, Inui M, Yukawa H.

Microbiology. 2008 Jan;154(Pt 1):264-74. doi: 10.1099/mic.0.2007/008862-0.

PMID:
18174145
16.

Corynebacterium glutamicum: a dissection of the PTS.

Parche S, Burkovski A, Sprenger GA, Weil B, Krämer R, Titgemeyer F.

J Mol Microbiol Biotechnol. 2001 Jul;3(3):423-8.

PMID:
11361073
17.

Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum.

Bäumchen C, Krings E, Bringer S, Eggeling L, Sahm H.

FEMS Microbiol Lett. 2009 Jan;290(2):227-35. doi: 10.1111/j.1574-6968.2008.01425.x. Epub 2008 Nov 20.

18.

Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.

Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM.

Appl Microbiol Biotechnol. 2011 Dec;92(5):985-96. doi: 10.1007/s00253-011-3478-x. Epub 2011 Jul 28.

PMID:
21796382
20.

Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.

Krause FS, Henrich A, Blombach B, Krämer R, Eikmanns BJ, Seibold GM.

Appl Environ Microbiol. 2010 Jan;76(1):370-4. doi: 10.1128/AEM.01553-09. Epub 2009 Oct 30.

Supplemental Content

Support Center