Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Structural insights into regulation and action of SWI2/SNF2 ATPases.

Hauk G, Bowman GD.

Curr Opin Struct Biol. 2011 Dec;21(6):719-27. doi: 10.1016/j.sbi.2011.09.003. Epub 2011 Oct 11. Review.

2.

X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA.

Dürr H, Körner C, Müller M, Hickmann V, Hopfner KP.

Cell. 2005 May 6;121(3):363-73.

3.

Phosphoaminoglycosides inhibit SWI2/SNF2 family DNA-dependent molecular motor domains.

Muthuswami R, Mesner LD, Wang D, Hill DA, Imbalzano AN, Hockensmith JW.

Biochemistry. 2000 Apr 18;39(15):4358-65.

PMID:
10757984
4.

Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures.

Dürr H, Flaus A, Owen-Hughes T, Hopfner KP.

Nucleic Acids Res. 2006;34(15):4160-7. Epub 2006 Aug 25. Review.

5.

A eukaryotic SWI2/SNF2 domain, an exquisite detector of double-stranded to single-stranded DNA transition elements.

Muthuswami R, Truman PA, Mesner LD, Hockensmith JW.

J Biol Chem. 2000 Mar 17;275(11):7648-55. Erratum in: J Biol Chem 2000 Jun 23;275(25):19433-4.

6.

Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination.

Ceballos SJ, Heyer WD.

Biochim Biophys Acta. 2011 Sep;1809(9):509-23. doi: 10.1016/j.bbagrm.2011.06.006. Epub 2011 Jun 16. Review.

7.

Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54.

Thomä NH, Czyzewski BK, Alexeev AA, Mazin AV, Kowalczykowski SC, Pavletich NP.

Nat Struct Mol Biol. 2005 Apr;12(4):350-6. Epub 2005 Apr 3.

PMID:
15806108
8.

Motifs Q and I are required for ATP hydrolysis but not for ATP binding in SWI2/SNF2 proteins.

Nongkhlaw M, Gupta M, Komath SS, Muthuswami R.

Biochemistry. 2012 May 8;51(18):3711-22. doi: 10.1021/bi2014757. Epub 2012 Apr 23.

PMID:
22510062
9.

Swi2/Snf2 remodelers: hybrid views on hybrid molecular machines.

Hopfner KP, Gerhold CB, Lakomek K, Wollmann P.

Curr Opin Struct Biol. 2012 Apr;22(2):225-33. doi: 10.1016/j.sbi.2012.02.007. Epub 2012 Mar 23. Review.

10.

One small step for Mot1; one giant leap for other Swi2/Snf2 enzymes?

Viswanathan R, Auble DT.

Biochim Biophys Acta. 2011 Sep;1809(9):488-96. doi: 10.1016/j.bbagrm.2011.05.012. Epub 2011 May 30. Review.

11.

A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling.

Smith CL, Peterson CL.

Mol Cell Biol. 2005 Jul;25(14):5880-92.

12.

Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2.

Richmond E, Peterson CL.

Nucleic Acids Res. 1996 Oct 1;24(19):3685-92.

13.
14.

The conformational plasticity of eukaryotic RNA-dependent ATPases.

Ozgur S, Buchwald G, Falk S, Chakrabarti S, Prabu JR, Conti E.

FEBS J. 2015 Mar;282(5):850-63. doi: 10.1111/febs.13198. Epub 2015 Feb 4. Review.

15.

Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1.

Banroques J, Doère M, Dreyfus M, Linder P, Tanner NK.

J Mol Biol. 2010 Mar 5;396(4):949-66. doi: 10.1016/j.jmb.2009.12.025. Epub 2009 Dec 21.

PMID:
20026132
16.

Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle.

Lewis R, Dürr H, Hopfner KP, Michaelis J.

Nucleic Acids Res. 2008 Apr;36(6):1881-90. doi: 10.1093/nar/gkn040. Epub 2008 Feb 11.

17.

Structure-function analysis of SWI2/SNF2 enzymes.

Dürr H, Hopfner KP.

Methods Enzymol. 2006;409:375-88.

PMID:
16793413
18.

Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics.

Hopfner KP, Michaelis J.

Curr Opin Struct Biol. 2007 Feb;17(1):87-95. Epub 2006 Dec 6. Review.

PMID:
17157498
20.

CHD6 is a DNA-dependent ATPase and localizes at nuclear sites of mRNA synthesis.

Lutz T, Stöger R, Nieto A.

FEBS Lett. 2006 Oct 30;580(25):5851-7. Epub 2006 Oct 2.

Supplemental Content

Support Center