Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information.

Dressaire C, Redon E, Gitton C, Loubière P, Monnet V, Cocaign-Bousquet M.

Microb Cell Fact. 2011 Aug 30;10 Suppl 1:S18. doi: 10.1186/1475-2859-10-S1-S18.

2.

Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses.

Dressaire C, Redon E, Milhem H, Besse P, Loubière P, Cocaign-Bousquet M.

BMC Genomics. 2008 Jul 21;9:343. doi: 10.1186/1471-2164-9-343.

3.

Dynamic analysis of the Lactococcus lactis transcriptome in cheeses made from milk concentrated by ultrafiltration reveals multiple strategies of adaptation to stresses.

Cretenet M, Laroute V, Ulvé V, Jeanson S, Nouaille S, Even S, Piot M, Girbal L, Le Loir Y, Loubière P, Lortal S, Cocaign-Bousquet M.

Appl Environ Microbiol. 2011 Jan;77(1):247-57. doi: 10.1128/AEM.01174-10.

4.

The significance of translation regulation in the stress response.

Picard F, Loubière P, Girbal L, Cocaign-Bousquet M.

BMC Genomics. 2013 Aug 28;14:588. doi: 10.1186/1471-2164-14-588.

5.

Transcriptome and proteome exploration to model translation efficiency and protein stability in Lactococcus lactis.

Dressaire C, Gitton C, Loubière P, Monnet V, Queinnec I, Cocaign-Bousquet M.

PLoS Comput Biol. 2009 Dec;5(12):e1000606. doi: 10.1371/journal.pcbi.1000606.

6.

Lactococcus lactis and stress.

Rallu F, Gruss A, Maguin E.

Antonie Van Leeuwenhoek. 1996 Oct;70(2-4):243-51. Review.

PMID:
8879409
7.

Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates.

Lahtvee PJ, Adamberg K, Arike L, Nahku R, Aller K, Vilu R.

Microb Cell Fact. 2011 Feb 24;10:12. doi: 10.1186/1475-2859-10-12.

8.

Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes.

Guédon E, Sperandio B, Pons N, Ehrlich SD, Renault P.

Microbiology. 2005 Dec;151(Pt 12):3895-909.

PMID:
16339935
9.

Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system.

Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P.

J Bacteriol. 2004 Mar;186(6):1648-57.

10.

Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator.

Petranovic D, Guédon E, Sperandio B, Delorme C, Ehrlich D, Renault P.

Mol Microbiol. 2004 Jul;53(2):613-21.

11.

Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis.

Guédon E, Serror P, Ehrlich SD, Renault P, Delorme C.

Mol Microbiol. 2001 Jun;40(5):1227-39.

12.

Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation.

Redon E, Loubiere P, Cocaign-Bousquet M.

J Bacteriol. 2005 May;187(10):3589-92.

13.

Physiology of pyruvate metabolism in Lactococcus lactis.

Cocaign-Bousquet M, Garrigues C, Loubiere P, Lindley ND.

Antonie Van Leeuwenhoek. 1996 Oct;70(2-4):253-67. Review.

PMID:
8879410
14.

Role of mRNA stability during bacterial adaptation.

Dressaire C, Picard F, Redon E, Loubière P, Queinnec I, Girbal L, Cocaign-Bousquet M.

PLoS One. 2013;8(3):e59059. doi: 10.1371/journal.pone.0059059.

15.

Expression in Lactococcus lactis of functional genes related to amino acid catabolism and cheese aroma formation is influenced by branched chain amino acids.

García-Cayuela T, Gómez de Cadiñanos LP, Peláez C, Requena T.

Int J Food Microbiol. 2012 Oct 15;159(3):207-13. doi: 10.1016/j.ijfoodmicro.2012.09.002.

PMID:
23107499
16.

Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

Larsen N, Moslehi-Jenabian S, Werner BB, Jensen ML, Garrigues C, Vogensen FK, Jespersen L.

Int J Food Microbiol. 2016 Jun 2;226:5-12. doi: 10.1016/j.ijfoodmicro.2016.03.002.

PMID:
27015296
17.

Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis.

Mazzoli R, Pessione E, Dufour M, Laroute V, Giuffrida MG, Giunta C, Cocaign-Bousquet M, Loubière P.

Amino Acids. 2010 Aug;39(3):727-37. doi: 10.1007/s00726-010-0507-5.

PMID:
20174841
19.

Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.

Ercan O, Wels M, Smid EJ, Kleerebezem M.

Appl Environ Microbiol. 2015 Apr;81(7):2554-61. doi: 10.1128/AEM.03748-14.

20.

Transcriptome analysis and related databases of Lactococcus lactis.

Kuipers OP, de Jong A, Baerends RJ, van Hijum SA, Zomer AL, Karsens HA, den Hengst CD, Kramer NE, Buist G, Kok J.

Antonie Van Leeuwenhoek. 2002 Aug;82(1-4):113-22. Review.

PMID:
12369183
Items per page

Supplemental Content

Support Center