Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

AMP-activated protein kinase mediates effects of oxidative stress on embryo gene expression in a mouse model of diabetic embryopathy.

Wu Y, Viana M, Thirumangalathu S, Loeken MR.

Diabetologia. 2012 Jan;55(1):245-54. doi: 10.1007/s00125-011-2326-y.

2.

Lack of metformin effect on mouse embryo AMPK activity: implications for metformin treatment during pregnancy.

Lee HY, Wei D, Loeken MR.

Diabetes Metab Res Rev. 2014 Jan;30(1):23-30. doi: 10.1002/dmrr.2451.

3.
4.

Hypoxic stress in diabetic pregnancy contributes to impaired embryo gene expression and defective development by inducing oxidative stress.

Li R, Chase M, Jung SK, Smith PJ, Loeken MR.

Am J Physiol Endocrinol Metab. 2005 Oct;289(4):E591-9.

5.

Advances in understanding the molecular causes of diabetes-induced birth defects.

Loeken MR.

J Soc Gynecol Investig. 2006 Jan;13(1):2-10.

PMID:
16303321
6.
7.

Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects.

Morgan SC, Relaix F, Sandell LL, Loeken MR.

Birth Defects Res A Clin Mol Teratol. 2008 Jun;82(6):453-63. doi: 10.1002/bdra.20457.

PMID:
18435457
9.

[Expression of Pax3 and Cx43 in NTD embryos induced by hyperglycemia].

Mao DW, Zhang YJ, Li QM, Li SR.

Zhonghua Yi Xue Za Zhi. 2003 Apr 10;83(7):593-7. Chinese.

PMID:
12887752
10.
11.

[Study of teratogenicity of hyperglycemia on neural tube defects and antagonistic effect of taurine].

Mao DW, Zhao YP, Li SR, Che JH, Tan WH.

Zhonghua Fu Chan Ke Za Zhi. 2004 Mar;39(3):169-72. Chinese.

PMID:
15130376
12.

Use of a murine embryonic stem cell line that is sensitive to high glucose environment to model neural tube development in diabetic pregnancy.

Sanders K, Jung JH, Loeken MR.

Birth Defects Res A Clin Mol Teratol. 2014 Aug;100(8):584-91. doi: 10.1002/bdra.23281.

13.

Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects.

Zhong J, Reece EA, Yang P.

Biochem Biophys Res Commun. 2015 Nov 13;467(2):179-84. doi: 10.1016/j.bbrc.2015.10.024.

14.

Stimulation of glucose transport in response to activation of distinct AMPK signaling pathways.

Jing M, Cheruvu VK, Ismail-Beigi F.

Am J Physiol Cell Physiol. 2008 Nov;295(5):C1071-82. doi: 10.1152/ajpcell.00040.2008.

15.
16.
17.

AMP-activated protein kinase (AMPK) activation inhibits nuclear translocation of Smad4 in mesangial cells and diabetic kidneys.

Zhao J, Miyamoto S, You YH, Sharma K.

Am J Physiol Renal Physiol. 2015 May 15;308(10):F1167-77. doi: 10.1152/ajprenal.00234.2014.

18.

Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis.

Phelan SA, Ito M, Loeken MR.

Diabetes. 1997 Jul;46(7):1189-97.

PMID:
9200655
19.

Stimulation of cardiomyogenesis of embryonic stem cells by nitric oxide downstream of AMP-activated protein kinase and mTOR signaling pathways.

Padmasekar M, Sharifpanah F, Finkensieper A, Wartenberg M, Sauer H.

Stem Cells Dev. 2011 Dec;20(12):2163-75. doi: 10.1089/scd.2010.0581.

PMID:
21470048
20.

AMPK activation regulates neuronal structure in developing hippocampal neurons.

Ramamurthy S, Chang E, Cao Y, Zhu J, Ronnett GV.

Neuroscience. 2014 Feb 14;259:13-24. doi: 10.1016/j.neuroscience.2013.11.048.

PMID:
24295634
Items per page

Supplemental Content

Support Center