Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 295


Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.

Lu Y, Chan HP, Wei J, Goodsitt M, Carson PL, Hadjiiski L, Schmitz A, Eberhard JW, Claus BE.

Med Phys. 2011 Oct;38(10):5703-12. doi: 10.1118/1.3637492.


Multiscale bilateral filtering for improving image quality in digital breast tomosynthesis.

Lu Y, Chan HP, Wei J, Hadjiiski LM, Samala RK.

Med Phys. 2015 Jan;42(1):182-95. doi: 10.1118/1.4903283.


A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.

Zhang Y, Chan HP, Sahiner B, Wei J, Goodsitt MM, Hadjiiski LM, Ge J, Zhou C.

Med Phys. 2006 Oct;33(10):3781-95.


Characterization of masses in digital breast tomosynthesis: comparison of machine learning in projection views and reconstructed slices.

Chan HP, Wu YT, Sahiner B, Wei J, Helvie MA, Zhang Y, Moore RH, Kopans DB, Hadjiiski L, Way T.

Med Phys. 2010 Jul;37(7):3576-86.


Digital breast tomosynthesis: observer performance of clustered microcalcification detection on breast phantom images acquired with an experimental system using variable scan angles, angular increments, and number of projection views.

Chan HP, Goodsitt MM, Helvie MA, Zelakiewicz S, Schmitz A, Noroozian M, Paramagul C, Roubidoux MA, Nees AV, Neal CH, Carson P, Lu Y, Hadjiiski L, Wei J.

Radiology. 2014 Dec;273(3):675-85. doi: 10.1148/radiol.14132722. Epub 2014 Jul 7.


Implementation and evaluation of an expectation maximization reconstruction algorithm for gamma emission breast tomosynthesis.

Gong Z, Klanian K, Patel T, Sullivan O, Williams MB.

Med Phys. 2012 Dec;39(12):7580-92. doi: 10.1118/1.4764480.


Optimization of the key imaging parameters for detection of microcalcifications in a newly developed digital breast tomosynthesis system.

Park HS, Kim YS, Kim HJ, Choi JG, Choi YW.

Clin Imaging. 2013 Nov-Dec;37(6):993-9. doi: 10.1016/j.clinimag.2013.06.003. Epub 2013 Jul 25.


Optimization of configuration parameters in a newly developed digital breast tomosynthesis system.

Park HS, Kim YS, Kim HJ, Choi YW, Choi JG.

J Radiat Res. 2014 May;55(3):589-99. doi: 10.1093/jrr/rrt130. Epub 2013 Dec 1.


Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.

Van de Sompel D, Brady SM, Boone J.

Med Image Anal. 2011 Feb;15(1):53-70. doi: 10.1016/ Epub 2010 Jul 27.


High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array.

Qian X, Tucker A, Gidcumb E, Shan J, Yang G, Calderon-Colon X, Sultana S, Lu J, Zhou O, Spronk D, Sprenger F, Zhang Y, Kennedy D, Farbizio T, Jing Z.

Med Phys. 2012 Apr;39(4):2090-9. doi: 10.1118/1.3694667.


Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.

Zheng J, Fessler JA, Chan HP.

Med Phys. 2017 Mar;44(3):986-1001. doi: 10.1002/mp.12092.


Improved digital breast tomosynthesis images using automated ultrasound.

Zhang X, Yuan J, Du S, Kripfgans OD, Wang X, Carson PL, Liu X.

Med Phys. 2014 Jun;41(6):061911. doi: 10.1118/1.4875980.


Digital breast tomosynthesis: computer-aided detection of clustered microcalcifications on planar projection images.

Samala RK, Chan HP, Lu Y, Hadjiiski LM, Wei J, Helvie MA.

Phys Med Biol. 2014 Dec 7;59(23):7457-77. doi: 10.1088/0031-9155/59/23/7457. Epub 2014 Nov 13.


A diffusion-based truncated projection artifact reduction method for iterative digital breast tomosynthesis reconstruction.

Lu Y, Chan HP, Wei J, Hadjiiski LM.

Phys Med Biol. 2013 Feb 7;58(3):569-87. doi: 10.1088/0031-9155/58/3/569. Epub 2013 Jan 14.


Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

Kim YS, Park HS, Lee HH, Choi YW, Choi JG, Kim HH, Kim HJ.

Radiol Med. 2016 Feb;121(2):81-92. doi: 10.1007/s11547-015-0583-4. Epub 2015 Sep 18.


Supplemental Content

Support Center