Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

Carbon and nitrogen assimilation in deep subseafloor microbial cells.

Morono Y, Terada T, Nishizawa M, Ito M, Hillion F, Takahata N, Sano Y, Inagaki F.

Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18295-300. doi: 10.1073/pnas.1107763108. Epub 2011 Oct 10.

2.

DEEP BIOSPHERE. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor.

Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin YS, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu CH, Murayama M, Ohkouchi N, Ono S, Park YS, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y.

Science. 2015 Jul 24;349(6246):420-4. doi: 10.1126/science.aaa6882. Epub 2015 Jul 23.

3.

Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds.

Trembath-Reichert E, Morono Y, Ijiri A, Hoshino T, Dawson KS, Inagaki F, Orphan VJ.

Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9206-E9215. doi: 10.1073/pnas.1707525114. Epub 2017 Oct 3.

4.

Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS.

Orphan VJ, Turk KA, Green AM, House CH.

Environ Microbiol. 2009 Jul;11(7):1777-91. doi: 10.1111/j.1462-2920.2009.01903.x. Epub 2009 Apr 6.

PMID:
19383036
5.

Distributions of microbial activities in deep subseafloor sediments.

D'Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guèrin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JL.

Science. 2004 Dec 24;306(5705):2216-21.

6.

Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.

Dekas AE, Poretsky RS, Orphan VJ.

Science. 2009 Oct 16;326(5951):422-6. doi: 10.1126/science.1178223.

7.

Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula.

Kobayashi T, Koide O, Mori K, Shimamura S, Matsuura T, Miura T, Takaki Y, Morono Y, Nunoura T, Imachi H, Inagaki F, Takai K, Horikoshi K.

Extremophiles. 2008 Jul;12(4):519-27. doi: 10.1007/s00792-008-0157-7. Epub 2008 Mar 27.

PMID:
18368287
8.

Distribution of anaerobic carbon monoxide dehydrogenase genes in deep subseafloor sediments.

Hoshino T, Inagaki F.

Lett Appl Microbiol. 2017 May;64(5):355-363. doi: 10.1111/lam.12727. Epub 2017 Mar 21.

PMID:
28256106
9.

Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.

Wegener G, Niemann H, Elvert M, Hinrichs KU, Boetius A.

Environ Microbiol. 2008 Sep;10(9):2287-98. doi: 10.1111/j.1462-2920.2008.01653.x. Epub 2008 May 21.

PMID:
18498367
10.
11.

Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes.

Hoshino T, Toki T, Ijiri A, Morono Y, Machiyama H, Ashi J, Okamura K, Inagaki F.

Front Microbiol. 2017 Jun 20;8:1135. doi: 10.3389/fmicb.2017.01135. eCollection 2017.

12.

Aquatic geomicrobiology.

Canfield DE, Kristensen E, Thamdrup B.

Adv Mar Biol. 2005;48:1-599. Review. No abstract available.

PMID:
15797449
13.

[Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].

Pimenov NV, Ul'ianova MO, Kanapatski TA, Sivkov VV, Ivanov MV.

Mikrobiologiia. 2008 Sep-Oct;77(5):651-9. Russian.

PMID:
19004347
14.

Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

Xie S, Lipp JS, Wegener G, Ferdelman TG, Hinrichs KU.

Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6010-4. doi: 10.1073/pnas.1218569110. Epub 2013 Mar 25.

15.

Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria.

Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB.

Nature. 2005 Feb 24;433(7028):861-4.

16.

Deep subseafloor microbial cells on physiological standby.

Jørgensen BB.

Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18193-4. doi: 10.1073/pnas.1115421108. Epub 2011 Oct 26. No abstract available.

17.

Evidence of intense archaeal and bacterial methanotrophic activity in the Black Sea water column.

Durisch-Kaiser E, Klauser L, Wehrli B, Schubert C.

Appl Environ Microbiol. 2005 Dec;71(12):8099-106.

18.

Global distribution of microbial abundance and biomass in subseafloor sediment.

Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D'Hondt S.

Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16213-6. doi: 10.1073/pnas.1203849109. Epub 2012 Aug 27.

19.

Microbial methane production in deep aquifer associated with the accretionary prism in Japan.

Kimura H, Nashimoto H, Shimizu M, Hattori S, Yamada K, Koba K, Yoshida N, Kato K.

ISME J. 2010 Apr;4(4):531-41. doi: 10.1038/ismej.2009.132. Epub 2009 Dec 3.

PMID:
19956275
20.

Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing.

Lin YS, Lipp JS, Elvert M, Holler T, Hinrichs KU.

Environ Microbiol. 2013 May;15(5):1634-46. doi: 10.1111/j.1462-2920.2012.02888.x. Epub 2012 Oct 4.

PMID:
23033882

Supplemental Content

Support Center