Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Protein glycosylation in Helicobacter pylori: beyond the flagellins?

Hopf PS, Ford RS, Zebian N, Merkx-Jacques A, Vijayakumar S, Ratnayake D, Hayworth J, Creuzenet C.

PLoS One. 2011;6(9):e25722. doi: 10.1371/journal.pone.0025722. Epub 2011 Sep 30.

2.

Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins.

Logan SM, Kelly JF, Thibault P, Ewing CP, Guerry P.

Mol Microbiol. 2002 Oct;46(2):587-97.

3.

Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction.

Schoenhofen IC, McNally DJ, Brisson JR, Logan SM.

Glycobiology. 2006 Sep;16(9):8C-14C. Epub 2006 Jun 3.

PMID:
16751642
4.

Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori.

Schirm M, Soo EC, Aubry AJ, Austin J, Thibault P, Logan SM.

Mol Microbiol. 2003 Jun;48(6):1579-92.

5.

Targeted identification of glycosylated proteins in the gastric pathogen Helicobacter pylori (Hp).

Champasa K, Longwell SA, Eldridge AM, Stemmler EA, Dube DH.

Mol Cell Proteomics. 2013 Sep;12(9):2568-86. doi: 10.1074/mcp.M113.029561. Epub 2013 Jun 10.

6.

Cloning, purification and preliminary crystallographic analysis of the Helicobacter pylori pseudaminic acid biosynthesis N-acetyltransferase PseH.

Liu YC, Ud-Din AI, Roujeinikova A.

Acta Crystallogr F Struct Biol Commun. 2014 Sep;70(Pt 9):1276-9. doi: 10.1107/S2053230X14015398. Epub 2014 Aug 27.

7.

Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin.

Thibault P, Logan SM, Kelly JF, Brisson JR, Ewing CP, Trust TJ, Guerry P.

J Biol Chem. 2001 Sep 14;276(37):34862-70. Epub 2001 Jul 18.

8.

Structural and functional analysis of Campylobacter jejuni PseG: a udp-sugar hydrolase from the pseudaminic acid biosynthetic pathway.

Rangarajan ES, Proteau A, Cui Q, Logan SM, Potetinova Z, Whitfield D, Purisima EO, Cygler M, Matte A, Sulea T, Schoenhofen IC.

J Biol Chem. 2009 Jul 31;284(31):20989-1000. doi: 10.1074/jbc.M109.012351. Epub 2009 May 29.

9.

Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach.

McNally DJ, Hui JP, Aubry AJ, Mui KK, Guerry P, Brisson JR, Logan SM, Soo EC.

J Biol Chem. 2006 Jul 7;281(27):18489-98. Epub 2006 May 9.

10.

Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans.

McNally DJ, Aubry AJ, Hui JP, Khieu NH, Whitfield D, Ewing CP, Guerry P, Brisson JR, Logan SM, Soo EC.

J Biol Chem. 2007 May 11;282(19):14463-75. Epub 2007 Mar 19.

11.

Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene.

Goon S, Kelly JF, Logan SM, Ewing CP, Guerry P.

Mol Microbiol. 2003 Oct;50(2):659-71.

12.

Comprehensive analysis of flagellin glycosylation in Campylobacter jejuni NCTC 11168 reveals incorporation of legionaminic acid and its importance for host colonization.

Zebian N, Merkx-Jacques A, Pittock PP, Houle S, Dozois CM, Lajoie GA, Creuzenet C.

Glycobiology. 2016 Apr;26(4):386-97. doi: 10.1093/glycob/cwv104. Epub 2015 Nov 17.

PMID:
26582606
13.

The renaissance of bacillosamine and its derivatives: pathway characterization and implications in pathogenicity.

Morrison MJ, Imperiali B.

Biochemistry. 2014 Feb 4;53(4):624-38. doi: 10.1021/bi401546r. Epub 2014 Jan 21. Review.

14.

Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways.

Schoenhofen IC, McNally DJ, Vinogradov E, Whitfield D, Young NM, Dick S, Wakarchuk WW, Brisson JR, Logan SM.

J Biol Chem. 2006 Jan 13;281(2):723-32. Epub 2005 Nov 11.

15.

Structure of an acidic polysaccharide from a marine bacterium Pseudoalteromonas distincta KMM 638 containing 5-acetamido-3,5,7,9-tetradeoxy-7-formamido-L-glycero-L-manno-nonulosonic acid.

Muldoon J, Shashkov AS, Senchenkova SN, Tomshich SV, Komandrova NA, Romanenko LA, Knirel YA, Savage AV.

Carbohydr Res. 2001 Jan 30;330(2):231-9.

PMID:
11217976
16.

Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori.

Schoenhofen IC, Lunin VV, Julien JP, Li Y, Ajamian E, Matte A, Cygler M, Brisson JR, Aubry A, Logan SM, Bhatia S, Wakarchuk WW, Young NM.

J Biol Chem. 2006 Mar 31;281(13):8907-16. Epub 2006 Jan 18.

17.

A pseudaminic acid or a legionaminic acid derivative transferase is strain-specifically implicated in the general protein O-glycosylation system of the periodontal pathogen Tannerella forsythia.

Tomek MB, Janesch B, Maresch D, Windwarder M, Altmann F, Messner P, Schäffer C.

Glycobiology. 2017 Jun 1;27(6):555-567. doi: 10.1093/glycob/cwx019.

18.

The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors.

Schoenhofen IC, Vinogradov E, Whitfield DM, Brisson JR, Logan SM.

Glycobiology. 2009 Jul;19(7):715-25. doi: 10.1093/glycob/cwp039. Epub 2009 Mar 12.

PMID:
19282391
19.

Identification of a new sialic acid-binding protein in Helicobacter pylori.

Bennett HJ, Roberts IS.

FEMS Immunol Med Microbiol. 2005 May 1;44(2):163-9.

20.

Flagellar glycosylation in Clostridium botulinum.

Twine SM, Paul CJ, Vinogradov E, McNally DJ, Brisson JR, Mullen JA, McMullin DR, Jarrell HC, Austin JW, Kelly JF, Logan SM.

FEBS J. 2008 Sep;275(17):4428-44. doi: 10.1111/j.1742-4658.2008.06589.x. Epub 2008 Jul 30.

Supplemental Content

Support Center