Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 418

1.

Comparison of solution-based exome capture methods for next generation sequencing.

Sulonen AM, Ellonen P, Almusa H, Lepistö M, Eldfors S, Hannula S, Miettinen T, Tyynismaa H, Salo P, Heckman C, Joensuu H, Raivio T, Suomalainen A, Saarela J.

Genome Biol. 2011 Sep 28;12(9):R94. doi: 10.1186/gb-2011-12-9-r94.

2.

Comprehensive comparison of three commercial human whole-exome capture platforms.

Asan, Xu Y, Jiang H, Tyler-Smith C, Xue Y, Jiang T, Wang J, Wu M, Liu X, Tian G, Wang J, Wang J, Yang H, Zhang X.

Genome Biol. 2011 Sep 28;12(9):R95. doi: 10.1186/gb-2011-12-9-r95.

3.

A comparative analysis of exome capture.

Parla JS, Iossifov I, Grabill I, Spector MS, Kramer M, McCombie WR.

Genome Biol. 2011 Sep 29;12(9):R97. doi: 10.1186/gb-2011-12-9-r97.

4.

Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform.

Summerer D, Schracke N, Wu H, Cheng Y, Bau S, Stähler CF, Stähler PF, Beier M.

Genomics. 2010 Apr;95(4):241-6. doi: 10.1016/j.ygeno.2010.01.006. Epub 2010 Feb 6.

5.

Variant detection sensitivity and biases in whole genome and exome sequencing.

Meynert AM, Ansari M, FitzPatrick DR, Taylor MS.

BMC Bioinformatics. 2014 Jul 19;15:247. doi: 10.1186/1471-2105-15-247.

6.

New insights into the performance of human whole-exome capture platforms.

Meienberg J, Zerjavic K, Keller I, Okoniewski M, Patrignani A, Ludin K, Xu Z, Steinmann B, Carrel T, Röthlisberger B, Schlapbach R, Bruggmann R, Matyas G.

Nucleic Acids Res. 2015 Jun 23;43(11):e76. doi: 10.1093/nar/gkv216. Epub 2015 Mar 27.

7.

Comparison of commercially available target enrichment methods for next-generation sequencing.

Bodi K, Perera AG, Adams PS, Bintzler D, Dewar K, Grove DS, Kieleczawa J, Lyons RH, Neubert TA, Noll AC, Singh S, Steen R, Zianni M.

J Biomol Tech. 2013 Jul;24(2):73-86. doi: 10.7171/jbt.13-2402-002.

8.

Exome sequencing generates high quality data in non-target regions.

Guo Y, Long J, He J, Li CI, Cai Q, Shu XO, Zheng W, Li C.

BMC Genomics. 2012 May 20;13:194. doi: 10.1186/1471-2164-13-194.

9.

Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery.

Kiialainen A, Karlberg O, Ahlford A, Sigurdsson S, Lindblad-Toh K, Syvänen AC.

PLoS One. 2011 Feb 9;6(2):e16486. doi: 10.1371/journal.pone.0016486.

10.

Performance comparison of exome DNA sequencing technologies.

Clark MJ, Chen R, Lam HY, Karczewski KJ, Chen R, Euskirchen G, Butte AJ, Snyder M.

Nat Biotechnol. 2011 Sep 25;29(10):908-14. doi: 10.1038/nbt.1975.

11.

Comparison of three targeted enrichment strategies on the SOLiD sequencing platform.

Hedges DJ, Guettouche T, Yang S, Bademci G, Diaz A, Andersen A, Hulme WF, Linker S, Mehta A, Edwards YJ, Beecham GW, Martin ER, Pericak-Vance MA, Zuchner S, Vance JM, Gilbert JR.

PLoS One. 2011 Apr 29;6(4):e18595. doi: 10.1371/journal.pone.0018595.

12.

Population-based rare variant detection via pooled exome or custom hybridization capture with or without individual indexing.

Ramos E, Levinson BT, Chasnoff S, Hughes A, Young AL, Thornton K, Li A, Vallania FL, Province M, Druley TE.

BMC Genomics. 2012 Dec 6;13:683. doi: 10.1186/1471-2164-13-683.

13.

Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.

Zhang G, Wang J, Yang J, Li W, Deng Y, Li J, Huang J, Hu S, Zhang B.

BMC Genomics. 2015 Aug 5;16:581. doi: 10.1186/s12864-015-1796-6.

14.

Targeted enrichment beyond the consensus coding DNA sequence exome reveals exons with higher variant densities.

Bainbridge MN, Wang M, Wu Y, Newsham I, Muzny DM, Jefferies JL, Albert TJ, Burgess DL, Gibbs RA.

Genome Biol. 2011 Jul 25;12(7):R68. doi: 10.1186/gb-2011-12-7-r68.

15.

Exome sequencing of a multigenerational human pedigree.

Hedges DJ, Burges D, Powell E, Almonte C, Huang J, Young S, Boese B, Schmidt M, Pericak-Vance MA, Martin E, Zhang X, Harkins TT, Züchner S.

PLoS One. 2009 Dec 14;4(12):e8232. doi: 10.1371/journal.pone.0008232. Erratum in: PLoS One. 2009;4(12). doi: 10.1371/annotation/b0fe9dd5-16e1-4b50-b590-263518fbd5eb. Hedges, Dale [corrected to Hedges, Dale J].

16.

The new sequencer on the block: comparison of Life Technology's Proton sequencer to an Illumina HiSeq for whole-exome sequencing.

Boland JF, Chung CC, Roberson D, Mitchell J, Zhang X, Im KM, He J, Chanock SJ, Yeager M, Dean M.

Hum Genet. 2013 Oct;132(10):1153-63. doi: 10.1007/s00439-013-1321-4. Epub 2013 Jun 12.

17.

Development and performance of a targeted whole exome sequencing enrichment kit for the dog (Canis Familiaris Build 3.1).

Broeckx BJ, Coopman F, Verhoeven GE, Bavegems V, De Keulenaer S, De Meester E, Van Niewerburgh F, Deforce D.

Sci Rep. 2014 Jul 7;4:5597. doi: 10.1038/srep05597.

18.

Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing.

Samorodnitsky E, Jewell BM, Hagopian R, Miya J, Wing MR, Lyon E, Damodaran S, Bhatt D, Reeser JW, Datta J, Roychowdhury S.

Hum Mutat. 2015 Sep;36(9):903-14. doi: 10.1002/humu.22825. Epub 2015 Jul 15.

19.

Exome capture from saliva produces high quality genomic and metagenomic data.

Kidd JM, Sharpton TJ, Bobo D, Norman PJ, Martin AR, Carpenter ML, Sikora M, Gignoux CR, Nemat-Gorgani N, Adams A, Guadalupe M, Guo X, Feng Q, Li Y, Liu X, Parham P, Hoal EG, Feldman MW, Pollard KS, Wall JD, Bustamante CD, Henn BM.

BMC Genomics. 2014 Apr 4;15:262. doi: 10.1186/1471-2164-15-262.

20.

Imputation-based assessment of next generation rare exome variant arrays.

Martin AR, Tse G, Bustamante CD, Kenny EE.

Pac Symp Biocomput. 2014:241-52.

Supplemental Content

Support Center