Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis.

Crawford MA, Lowe DE, Fisher DJ, Stibitz S, Plaut RD, Beaber JW, Zemansky J, Mehrad B, Glomski IJ, Strieter RM, Hughes MA.

Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17159-64. doi: 10.1073/pnas.1108495108. Epub 2011 Sep 26.

2.

Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli.

Crawford MA, Zhu Y, Green CS, Burdick MD, Sanz P, Alem F, O'Brien AD, Mehrad B, Strieter RM, Hughes MA.

Infect Immun. 2009 Apr;77(4):1664-78. doi: 10.1128/IAI.01208-08. Epub 2009 Jan 29.

3.

Interferon-inducible CXC chemokines directly contribute to host defense against inhalational anthrax in a murine model of infection.

Crawford MA, Burdick MD, Glomski IJ, Boyer AE, Barr JR, Mehrad B, Strieter RM, Hughes MA.

PLoS Pathog. 2010 Nov 18;6(11):e1001199. doi: 10.1371/journal.ppat.1001199.

4.

CXCL10 Acts as a Bifunctional Antimicrobial Molecule against Bacillus anthracis.

Margulieux KR, Fox JW, Nakamoto RK, Hughes MA.

MBio. 2016 May 10;7(3). pii: e00334-16. doi: 10.1128/mBio.00334-16.

5.

Escherichia coli Pyruvate Dehydrogenase Complex Is an Important Component of CXCL10-Mediated Antimicrobial Activity.

Schutte KM, Fisher DJ, Burdick MD, Mehrad B, Mathers AJ, Mann BJ, Nakamoto RK, Hughes MA.

Infect Immun. 2015 Nov 9;84(1):320-8. doi: 10.1128/IAI.00552-15.

6.

Analysis of a novel spore antigen in Bacillus anthracis that contributes to spore opsonization.

Cote CK, Bozue J, Moody KL, DiMezzo TL, Chapman CE, Welkos SL.

Microbiology. 2008 Feb;154(Pt 2):619-32. doi: 10.1099/mic.0.2007/008292-0.

PMID:
18227265
7.

Human chemokines as antimicrobial peptides with direct parasiticidal effect on Leishmania mexicana in vitro.

Söbirk SK, Mörgelin M, Egesten A, Bates P, Shannon O, Collin M.

PLoS One. 2013;8(3):e58129. doi: 10.1371/journal.pone.0058129. Epub 2013 Mar 22.

8.

Impact of spores on the comparative efficacies of five antibiotics for treatment of Bacillus anthracis in an in vitro hollow fiber pharmacodynamic model.

Louie A, VanScoy BD, Brown DL, Kulawy RW, Heine HS, Drusano GL.

Antimicrob Agents Chemother. 2012 Mar;56(3):1229-39. doi: 10.1128/AAC.01109-10. Epub 2011 Dec 12.

9.

Significant passive protective effect against anthrax by antibody to Bacillus anthracis inactivated spores that lack two virulence plasmids.

Enkhtuya J, Kawamoto K, Kobayashi Y, Uchida I, Rana N, Makino S.

Microbiology. 2006 Oct;152(Pt 10):3103-10.

PMID:
17005989
10.

Interactions of antimicrobial peptide chrysophsin-3 with Bacillus anthracis in sporulated, germinated, and vegetative states.

Pinzón-Arango PA, Nagarajan R, Camesano TA.

J Phys Chem B. 2013 May 30;117(21):6364-72. doi: 10.1021/jp400489u. Epub 2013 May 16.

PMID:
23631815
11.

The Bacillus anthracis protein MprF is required for synthesis of lysylphosphatidylglycerols and for resistance to cationic antimicrobial peptides.

Samant S, Hsu FF, Neyfakh AA, Lee H.

J Bacteriol. 2009 Feb;191(4):1311-9. doi: 10.1128/JB.01345-08. Epub 2008 Dec 12.

12.

Type-IIA secreted phospholipase A2 is an endogenous antibiotic-like protein of the host.

Wu Y, Raymond B, Goossens PL, Njamkepo E, Guiso N, Paya M, Touqui L.

Biochimie. 2010 Jun;92(6):583-7. doi: 10.1016/j.biochi.2010.01.024. Epub 2010 Feb 6. Review.

PMID:
20144678
13.

Dendritic cells endocytose Bacillus anthracis spores: implications for anthrax pathogenesis.

Brittingham KC, Ruthel G, Panchal RG, Fuller CL, Ribot WJ, Hoover TA, Young HA, Anderson AO, Bavari S.

J Immunol. 2005 May 1;174(9):5545-52.

14.

Bacillus anthracis Peptidoglycan Integrity Is Disrupted by the Chemokine CXCL10 through the FtsE/X Complex.

Margulieux KR, Liebov BK, Tirumala VSKKS, Singh A, Bushweller JH, Nakamoto RK, Hughes MA.

Front Microbiol. 2017 Apr 27;8:740. doi: 10.3389/fmicb.2017.00740. eCollection 2017.

15.
16.

Novel role for the yceGH tellurite resistance genes in the pathogenesis of Bacillus anthracis.

Franks SE, Ebrahimi C, Hollands A, Okumura CY, Aroian RV, Nizet V, McGillivray SM.

Infect Immun. 2014 Mar;82(3):1132-40. doi: 10.1128/IAI.01614-13. Epub 2013 Dec 23.

17.

Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach.

Rahman A, Noore S, Hasan A, Ullah R, Rahman H, Hossain A, Ali Y, Islam S.

Comput Biol Chem. 2014 Oct;52:66-72. doi: 10.1016/j.compbiolchem.2014.09.005. Epub 2014 Sep 18.

PMID:
25254941
18.

Recombinant GroEL enhances protective antigen-mediated protection against Bacillus anthracis spore challenge.

Sinha K, Bhatnagar R.

Med Microbiol Immunol. 2013 Apr;202(2):153-65. doi: 10.1007/s00430-012-0280-z. Epub 2012 Dec 21.

PMID:
23263010
19.

Bacillus anthracis lcp Genes Support Vegetative Growth, Envelope Assembly, and Spore Formation.

Liszewski Zilla M, Lunderberg JM, Schneewind O, Missiakas D.

J Bacteriol. 2015 Dec;197(23):3731-41. doi: 10.1128/JB.00656-15. Epub 2015 Sep 21.

20.

Importance of nitric oxide synthase in the control of infection by Bacillus anthracis.

Raines KW, Kang TJ, Hibbs S, Cao GL, Weaver J, Tsai P, Baillie L, Cross AS, Rosen GM.

Infect Immun. 2006 Apr;74(4):2268-76.

Supplemental Content

Support Center