Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 226


Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae.

Kasperkovitz PV, Khan NS, Tam JM, Mansour MK, Davids PJ, Vyas JM.

Infect Immun. 2011 Dec;79(12):4858-67. doi: 10.1128/IAI.05626-11. Epub 2011 Sep 26.


Dectin-1 Controls TLR9 Trafficking to Phagosomes Containing β-1,3 Glucan.

Khan NS, Kasperkovitz PV, Timmons AK, Mansour MK, Tam JM, Seward MW, Reedy JL, Puranam S, Feliu M, Vyas JM.

J Immunol. 2016 Mar 1;196(5):2249-61. doi: 10.4049/jimmunol.1401545. Epub 2016 Feb 1.


Recognition of yeast nucleic acids triggers a host-protective type I interferon response.

Biondo C, Signorino G, Costa A, Midiri A, Gerace E, Galbo R, Bellantoni A, Malara A, Beninati C, Teti G, Mancuso G.

Eur J Immunol. 2011 Jul;41(7):1969-79. doi: 10.1002/eji.201141490.


Redundant role of TLR9 for anti-Candida host defense.

van de Veerdonk FL, Netea MG, Jansen TJ, Jacobs L, Verschueren I, van der Meer JW, Kullberg BJ.

Immunobiology. 2008;213(8):613-20. doi: 10.1016/j.imbio.2008.05.002. Epub 2008 Jun 26.


TLR9 is actively recruited to Aspergillus fumigatus phagosomes and requires the N-terminal proteolytic cleavage domain for proper intracellular trafficking.

Kasperkovitz PV, Cardenas ML, Vyas JM.

J Immunol. 2010 Dec 15;185(12):7614-22. doi: 10.4049/jimmunol.1002760. Epub 2010 Nov 8.


Recognition of yeast by murine macrophages requires mannan but not glucan.

Keppler-Ross S, Douglas L, Konopka JB, Dean N.

Eukaryot Cell. 2010 Nov;9(11):1776-87. doi: 10.1128/EC.00156-10. Epub 2010 Sep 10.


Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis.

Biondo C, Malara A, Costa A, Signorino G, Cardile F, Midiri A, Galbo R, Papasergi S, Domina M, Pugliese M, Teti G, Mancuso G, Beninati C.

Eur J Immunol. 2012 Oct;42(10):2632-43. doi: 10.1002/eji.201242532. Epub 2012 Aug 28.


Toll-Like receptor 2 (TLR2) and TLR9 play opposing roles in host innate immunity against Salmonella enterica serovar Typhimurium infection.

Zhan R, Han Q, Zhang C, Tian Z, Zhang J.

Infect Immun. 2015 Apr;83(4):1641-9. doi: 10.1128/IAI.02870-14. Epub 2015 Feb 9.


The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans.

Wells CA, Salvage-Jones JA, Li X, Hitchens K, Butcher S, Murray RZ, Beckhouse AG, Lo YL, Manzanero S, Cobbold C, Schroder K, Ma B, Orr S, Stewart L, Lebus D, Sobieszczuk P, Hume DA, Stow J, Blanchard H, Ashman RB.

J Immunol. 2008 Jun 1;180(11):7404-13.


The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo.

Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L.

J Immunol. 2004 Mar 1;172(5):3059-69.


Toll-like receptor 9-mediated protection of enterovirus 71 infection in mice is due to the release of danger-associated molecular patterns.

Hsiao HB, Chou AH, Lin SI, Chen IH, Lien SP, Liu CC, Chong P, Liu SJ.

J Virol. 2014 Oct;88(20):11658-70. doi: 10.1128/JVI.00867-14. Epub 2014 Jul 30.


Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling.

Jouault T, El Abed-El Behi M, Martínez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, Trottein F, Poulain D.

J Immunol. 2006 Oct 1;177(7):4679-87.


Toll-like receptor 9-dependent activation of myeloid dendritic cells by Deoxynucleic acids from Candida albicans.

Miyazato A, Nakamura K, Yamamoto N, Mora-Montes HM, Tanaka M, Abe Y, Tanno D, Inden K, Gang X, Ishii K, Takeda K, Akira S, Saijo S, Iwakura Y, Adachi Y, Ohno N, Mitsutake K, Gow NA, Kaku M, Kawakami K.

Infect Immun. 2009 Jul;77(7):3056-64. doi: 10.1128/IAI.00840-08. Epub 2009 May 11.


Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-β signaling.

Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, Stockinger S, Decker T, Akira S, Müller M, Kuchler K.

J Immunol. 2011 Mar 1;186(5):3104-12. doi: 10.4049/jimmunol.1002599. Epub 2011 Jan 31.


Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans.

Nicola AM, Albuquerque P, Martinez LR, Dal-Rosso RA, Saylor C, De Jesus M, Nosanchuk JD, Casadevall A.

Infect Immun. 2012 Sep;80(9):3065-76. doi: 10.1128/IAI.00358-12. Epub 2012 Jun 18.


Candida albicans hypha formation and mannan masking of β-glucan inhibit macrophage phagosome maturation.

Bain JM, Louw J, Lewis LE, Okai B, Walls CA, Ballou ER, Walker LA, Reid D, Munro CA, Brown AJ, Brown GD, Gow NA, Erwig LP.

MBio. 2014 Dec 2;5(6):e01874. doi: 10.1128/mBio.01874-14.


Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions.

Wagener J, MacCallum DM, Brown GD, Gow NA.

MBio. 2017 Jan 24;8(1). pii: e01820-16. doi: 10.1128/mBio.01820-16.


Toll-like receptor-2 is essential in murine defenses against Candida albicans infections.

Villamón E, Gozalbo D, Roig P, O'Connor JE, Fradelizi D, Gil ML.

Microbes Infect. 2004 Jan;6(1):1-7.


Candida albicans suppresses nitric oxide generation from macrophages via a secreted molecule.

Collette JR, Zhou H, Lorenz MC.

PLoS One. 2014 Apr 22;9(4):e96203. doi: 10.1371/journal.pone.0096203. eCollection 2014.


Differential role of MyD88 in macrophage-mediated responses to opportunistic fungal pathogens.

Marr KA, Balajee SA, Hawn TR, Ozinsky A, Pham U, Akira S, Aderem A, Liles WC.

Infect Immun. 2003 Sep;71(9):5280-6.

Supplemental Content

Support Center