Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 173

1.

Plasmonic nanoparticle chain in a light field: a resonant optical sail.

Albaladejo S, Sáenz JJ, Marqués MI.

Nano Lett. 2011 Nov 9;11(11):4597-600. doi: 10.1021/nl201996t.

PMID:
21942220
2.

Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity.

Chen C, Juan ML, Li Y, Maes G, Borghs G, Van Dorpe P, Quidant R.

Nano Lett. 2012 Jan 11;12(1):125-32. doi: 10.1021/nl2031458.

PMID:
22136462
3.

Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation.

Fujii M.

Opt Express. 2010 Dec 20;18(26):27731-47. doi: 10.1364/OE.18.027731.

PMID:
21197048
4.

Plasmonic oligomers: the role of individual particles in collective behavior.

Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N.

ACS Nano. 2011 Mar 22;5(3):2042-50. doi: 10.1021/nn103172t.

PMID:
21344858
5.

Three dimensional nanoparticle trapping enhanced by surface plasmon resonance.

Wu J, Gan X.

Opt Express. 2010 Dec 20;18(26):27619-26. doi: 10.1364/OE.18.027619.

PMID:
21197036
6.

3-dimensional eigenmodal analysis of plasmonic nanostructures.

Guo H, Oswald B, Arbenz P.

Opt Express. 2012 Feb 27;20(5):5481-500. doi: 10.1364/OE.20.005481.

PMID:
22418354
7.

Light trapping with plasmonic particles: beyond the dipole model.

Beck FJ, Mokkapati S, Catchpole KR.

Opt Express. 2011 Dec 5;19(25):25230-41. doi: 10.1364/OE.19.025230.

PMID:
22273914
8.

Tunable optical sorting and manipulation of nanoparticles via plasmon excitation.

Zelenina AS, Quidant R, Badenes G, Nieto-Vesperinas M.

Opt Lett. 2006 Jul 1;31(13):2054-6.

PMID:
16770430
9.

Excitation and reemission of molecules near realistic plasmonic nanostructures.

Kern AM, Martin OJ.

Nano Lett. 2011 Feb 9;11(2):482-7. doi: 10.1021/nl1032588.

PMID:
21204546
10.

Tunable optical antennas based on metallic nanoshells with nanoknobs.

Denisyuk AI, Tinskaya MA, Petrov MI, Shelaev AV, Dorozhkin PS.

J Nanosci Nanotechnol. 2012 Nov;12(11):8651-5.

PMID:
23421259
11.

Low-temperature plasmonics of metallic nanostructures.

Bouillard JS, Dickson W, O'Connor DP, Wurtz GA, Zayats AV.

Nano Lett. 2012 Mar 14;12(3):1561-5. doi: 10.1021/nl204420s.

PMID:
22339644
12.

Simulation of surface plasmon resonance of metallic nanoparticles by the boundary-element method.

Liaw JW.

J Opt Soc Am A Opt Image Sci Vis. 2006 Jan;23(1):108-16.

PMID:
16478066
13.

Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.

Simmons CS, Knouf EC, Tewari M, Lin LY.

J Vis Exp. 2011 Sep 27;(55). pii: 3390. doi: 10.3791/3390.

14.
15.

Acousto-plasmonic and surface-enhanced Raman scattering properties of coupled gold nanospheres/nanodisk trimers.

Tripathy S, Marty R, Lin VK, Teo SL, Ye E, Arbouet A, Saviot L, Girard C, Han MY, Mlayah A.

Nano Lett. 2011 Feb 9;11(2):431-7. doi: 10.1021/nl103089e.

PMID:
21214216
16.
17.

Effect of retardation on localized surface plasmon resonances in a metallic nanorod.

Davis TJ, Vernon KC, Gómez DE.

Opt Express. 2009 Dec 21;17(26):23655-63. doi: 10.1364/OE.17.023655.

PMID:
20052075
18.

Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap.

Ohlinger A, Nedev S, Lutich AA, Feldmann J.

Nano Lett. 2011 Apr 13;11(4):1770-4. doi: 10.1021/nl2003544.

19.

A tunable plasmon resonance in gold nanobelts.

Anderson LJ, Payne CM, Zhen YR, Nordlander P, Hafner JH.

Nano Lett. 2011 Nov 9;11(11):5034-7. doi: 10.1021/nl203085t.

PMID:
21973047
20.

"Digitally" addressable focusing of light into a subwavelength hot spot.

Kao TS, Rogers ET, Ou JY, Zheludev NI.

Nano Lett. 2012 Jun 13;12(6):2728-31. doi: 10.1021/nl2043437.

PMID:
22455391
Items per page

Supplemental Content

Support Center