Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 211

1.

FoxO6 integrates insulin signaling with gluconeogenesis in the liver.

Kim DH, Perdomo G, Zhang T, Slusher S, Lee S, Phillips BE, Fan Y, Giannoukakis N, Gramignoli R, Strom S, Ringquist S, Dong HH.

Diabetes. 2011 Nov;60(11):2763-74. doi: 10.2337/db11-0548. Epub 2011 Sep 22.

2.

Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice.

Calabuig-Navarro V, Yamauchi J, Lee S, Zhang T, Liu YZ, Sadlek K, Coudriet GM, Piganelli JD, Jiang CL, Miller R, Lowe M, Harashima H, Dong HH.

J Biol Chem. 2015 Jun 19;290(25):15581-94. doi: 10.1074/jbc.M115.650994. Epub 2015 May 5.

3.

FoxO6 integrates insulin signaling with MTP for regulating VLDL production in the liver.

Kim DH, Zhang T, Lee S, Calabuig-Navarro V, Yamauchi J, Piccirillo A, Fan Y, Uppala R, Goetzman E, Dong HH.

Endocrinology. 2014 Apr;155(4):1255-67. doi: 10.1210/en.2013-1856. Epub 2014 Jan 17.

4.

FoxO6 in glucose metabolism (FoxO6).

Kim DH, Zhang T, Lee S, Dong HH.

J Diabetes. 2013 Sep;5(3):233-40. doi: 10.1111/1753-0407.12027. Epub 2013 May 28. Review.

5.

FoxO integration of insulin signaling with glucose and lipid metabolism.

Lee S, Dong HH.

J Endocrinol. 2017 May;233(2):R67-R79. doi: 10.1530/JOE-17-0002. Epub 2017 Feb 17. Review.

6.

Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism.

Qu S, Altomonte J, Perdomo G, He J, Fan Y, Kamagate A, Meseck M, Dong HH.

Endocrinology. 2006 Dec;147(12):5641-52. Epub 2006 Sep 21.

7.

FoxO1 links hepatic insulin action to endoplasmic reticulum stress.

Kamagate A, Kim DH, Zhang T, Slusher S, Gramignoli R, Strom SC, Bertera S, Ringquist S, Dong HH.

Endocrinology. 2010 Aug;151(8):3521-35. doi: 10.1210/en.2009-1306. Epub 2010 May 25.

8.

Activation of the Liver X Receptor by Agonist TO901317 Improves Hepatic Insulin Resistance via Suppressing Reactive Oxygen Species and JNK Pathway.

Dong Y, Gao G, Fan H, Li S, Li X, Liu W.

PLoS One. 2015 Apr 24;10(4):e0124778. doi: 10.1371/journal.pone.0124778. eCollection 2015.

9.

PKB/Akt phosphorylation of ERRĪ³ contributes to insulin-mediated inhibition of hepatic gluconeogenesis.

Kim DK, Kim YH, Hynx D, Wang Y, Yang KJ, Ryu D, Kim KS, Yoo EK, Kim JS, Koo SH, Lee IK, Chae HZ, Park J, Lee CH, Biddinger SB, Hemmings BA, Choi HS.

Diabetologia. 2014 Dec;57(12):2576-85. doi: 10.1007/s00125-014-3366-x. Epub 2014 Sep 10.

PMID:
25205222
10.

Regulation of glucose metabolism via hepatic forkhead transcription factor 1 (FoxO1) by Morinda citrifolia (noni) in high-fat diet-induced obese mice.

Nerurkar PV, Nishioka A, Eck PO, Johns LM, Volper E, Nerurkar VR.

Br J Nutr. 2012 Jul;108(2):218-228. doi: 10.1017/S0007114511005563. Epub 2011 Oct 20.

11.

Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice.

Altomonte J, Richter A, Harbaran S, Suriawinata J, Nakae J, Thung SN, Meseck M, Accili D, Dong H.

Am J Physiol Endocrinol Metab. 2003 Oct;285(4):E718-28. Epub 2003 Jun 3.

12.

Overexpression of c-myc in the liver prevents obesity and insulin resistance.

Riu E, Ferre T, Hidalgo A, Mas A, Franckhauser S, Otaegui P, Bosch F.

FASEB J. 2003 Sep;17(12):1715-7. Epub 2003 Jul 18.

PMID:
12958186
13.

Selective reversible inhibition of liver carnitine palmitoyl-transferase 1 by teglicar reduces gluconeogenesis and improves glucose homeostasis.

Conti R, Mannucci E, Pessotto P, Tassoni E, Carminati P, Giannessi F, Arduini A.

Diabetes. 2011 Feb;60(2):644-51. doi: 10.2337/db10-0346.

14.

Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2.

Hogan MF, Ravnskjaer K, Matsumura S, Huising MO, Hull RL, Kahn SE, Montminy M.

J Biol Chem. 2015 Oct 23;290(43):25997-6006. doi: 10.1074/jbc.M115.679266. Epub 2015 Sep 4.

15.

Suppression of hepatic glucose production by human neutrophil alpha-defensins through a signaling pathway distinct from insulin.

Liu HY, Collins QF, Moukdar F, Zhuo D, Han J, Hong T, Collins S, Cao W.

J Biol Chem. 2008 May 2;283(18):12056-63. doi: 10.1074/jbc.M801033200. Epub 2008 Mar 17.

16.

Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1.

Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM.

Nature. 2001 Sep 13;413(6852):131-8.

PMID:
11557972
17.

Resistin-like molecule beta activates MAPKs, suppresses insulin signaling in hepatocytes, and induces diabetes, hyperlipidemia, and fatty liver in transgenic mice on a high fat diet.

Kushiyama A, Shojima N, Ogihara T, Inukai K, Sakoda H, Fujishiro M, Fukushima Y, Anai M, Ono H, Horike N, Viana AY, Uchijima Y, Nishiyama K, Shimosawa T, Fujita T, Katagiri H, Oka Y, Kurihara H, Asano T.

J Biol Chem. 2005 Dec 23;280(51):42016-25. Epub 2005 Oct 21.

18.

TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver.

Du K, Herzig S, Kulkarni RN, Montminy M.

Science. 2003 Jun 6;300(5625):1574-7.

19.

MAPK phosphatase-3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice.

Wu Z, Jiao P, Huang X, Feng B, Feng Y, Yang S, Hwang P, Du J, Nie Y, Xiao G, Xu H.

J Clin Invest. 2010 Nov;120(11):3901-11. doi: 10.1172/JCI43250.

20.

Caveolin gene transfer improves glucose metabolism in diabetic mice.

Otsu K, Toya Y, Oshikawa J, Kurotani R, Yazawa T, Sato M, Yokoyama U, Umemura S, Minamisawa S, Okumura S, Ishikawa Y.

Am J Physiol Cell Physiol. 2010 Mar;298(3):C450-6. doi: 10.1152/ajpcell.00077.2009. Epub 2009 Nov 18.

Supplemental Content

Support Center