Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Multivariate analysis of the relation between diet and warfarin dose.

Rasmussen MA, Skov J, Bladbjerg EM, Sidelmann JJ, Vamosi M, Jespersen J.

Eur J Clin Pharmacol. 2012 Mar;68(3):321-8. doi: 10.1007/s00228-011-1123-3. Epub 2011 Sep 21.

PMID:
21935704
2.

In pediatric patients, age has more impact on dosing of vitamin K antagonists than VKORC1 or CYP2C9 genotypes.

Nowak-Göttl U, Dietrich K, Schaffranek D, Eldin NS, Yasui Y, Geisen C, Mitchell LG.

Blood. 2010 Dec 23;116(26):6101-5. doi: 10.1182/blood-2010-05-283861. Epub 2010 Sep 10.

3.

A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9.

Tham LS, Goh BC, Nafziger A, Guo JY, Wang LZ, Soong R, Lee SC.

Clin Pharmacol Ther. 2006 Oct;80(4):346-55.

PMID:
17015052
4.

Factors influencing warfarin dose requirements in African-Americans.

Momary KM, Shapiro NL, Viana MA, Nutescu EA, Helgason CM, Cavallari LH.

Pharmacogenomics. 2007 Nov;8(11):1535-44.

PMID:
18034618
5.

Warfarin dosing algorithm using clinical, demographic and pharmacogenetic data from Chinese patients.

You JH, Wong RS, Waye MM, Mu Y, Lim CK, Choi KC, Cheng G.

J Thromb Thrombolysis. 2011 Jan;31(1):113-8. doi: 10.1007/s11239-010-0497-x.

PMID:
20585834
6.

Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients.

Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, Otsuki T, Okayama A, Minematsu K, Naritomi H, Honda S, Tomoike H, Miyata T.

Thromb Res. 2007;120(2):181-6. Epub 2006 Oct 17.

PMID:
17049586
7.

Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements.

Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, Gaston KL, Waddell CD, Chirico MJ, Johnson JA.

Clin Pharmacol Ther. 2006 Apr;79(4):291-302. Epub 2006 Feb 28.

PMID:
16580898
8.

An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients.

Meckley LM, Wittkowsky AK, Rieder MJ, Rettie AE, Veenstra DL.

Thromb Haemost. 2008 Aug;100(2):229-39.

PMID:
18690342
9.

Association of Vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population.

Veenstra DL, You JH, Rieder MJ, Farin FM, Wilkerson HW, Blough DK, Cheng G, Rettie AE.

Pharmacogenet Genomics. 2005 Oct;15(10):687-91.

PMID:
16141794
10.

Warfarin and vitamin K intake in the era of pharmacogenetics.

Lurie Y, Loebstein R, Kurnik D, Almog S, Halkin H.

Br J Clin Pharmacol. 2010 Aug;70(2):164-70. doi: 10.1111/j.1365-2125.2010.03672.x. Review.

11.

Optimization of warfarin dose by population-specific pharmacogenomic algorithm.

Pavani A, Naushad SM, Rupasree Y, Kumar TR, Malempati AR, Pinjala RK, Mishra RC, Kutala VK.

Pharmacogenomics J. 2012 Aug;12(4):306-11. doi: 10.1038/tpj.2011.4. Epub 2011 Mar 1.

PMID:
21358752
12.

Pharmacogenetic impact of VKORC1 and CYP2C9 allelic variants on warfarin dose requirements in a hispanic population isolate.

Palacio L, Falla D, Tobon I, Mejia F, Lewis JE, Martinez AF, Arcos-Burgos M, Camargo M.

Clin Appl Thromb Hemost. 2010 Feb;16(1):83-90. doi: 10.1177/1076029608330472. Epub 2009 Jun 29.

PMID:
19567378
13.

Nutri-pharmacogenomics of warfarin anticoagulation therapy: VKORC1 genotype-dependent influence of dietary vitamin K intake.

Saito R, Takeda K, Yamamoto K, Nakagawa A, Aoki H, Fujibayashi K, Wakasa M, Motoyama A, Iwadare M, Ishida R, Fujioka N, Tsuchiya T, Akao H, Kawai Y, Kitayama M, Kajinami K.

J Thromb Thrombolysis. 2014 Jul;38(1):105-14. doi: 10.1007/s11239-013-0978-9.

PMID:
23928870
14.

[Impact of pharmacogenetics on interindividual variability in the response to vitamin K antagonist therapy].

Siguret V.

Pathol Biol (Paris). 2007 Jul;55(6):295-8. Epub 2007 Jul 3. French.

PMID:
17611042
15.

Prevalence of VKORC1 and CYP2C9 gene polymorphisms in Indian population and its effect on warfarin response.

Shalia KK, Doshi SM, Parikh S, Pawar PP, Divekar SS, Varma SP, Mehta R, Doctor T, Shah VK, Saranath D.

J Assoc Physicians India. 2012 Dec;60:34-8.

PMID:
23781667
16.

The impact of genetic polymorphisms and patient characteristics on warfarin dose requirements: a cross-sectional study in Iran.

Namazi S, Azarpira N, Hendijani F, Khorshid MB, Vessal G, Mehdipour AR.

Clin Ther. 2010 Jun;32(6):1050-60. doi: 10.1016/j.clinthera.2010.06.010.

PMID:
20637959
17.

Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians.

Suriapranata IM, Tjong WY, Wang T, Utama A, Raharjo SB, Yuniadi Y, Tai SS.

BMC Med Genet. 2011 Jun 6;12:80. doi: 10.1186/1471-2350-12-80.

18.

Contribution of VKORC1 and CYP2C9 polymorphisms in the interethnic variability of warfarin dose in Malaysian populations.

Gan GG, Phipps ME, Lee MM, Lu LS, Subramaniam RY, Bee PC, Chang SH.

Ann Hematol. 2011 Jun;90(6):635-41. doi: 10.1007/s00277-010-1119-6. Epub 2010 Nov 26.

PMID:
21110192
19.

Combination of phenotype assessments and CYP2C9-VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients.

Michaud V, Vanier MC, Brouillette D, Roy D, Verret L, Noel N, Taillon I, O'Hara G, Gossard D, Champagne M, Goodman K, Renaud Y, Brown A, Phillips M, Ajami AM, Turgeon J.

Clin Pharmacol Ther. 2008 May;83(5):740-8. Epub 2007 Nov 14.

PMID:
18030307
20.

Association of VKORC1 and CYP2C9 polymorphisms with warfarin dose requirements in Japanese patients.

Mushiroda T, Ohnishi Y, Saito S, Takahashi A, Kikuchi Y, Saito S, Shimomura H, Wanibuchi Y, Suzuki T, Kamatani N, Nakamura Y.

J Hum Genet. 2006;51(3):249-53. Epub 2006 Jan 24.

PMID:
16432637

Supplemental Content

Support Center