Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 256

1.

Differential glycosylation of α-dystroglycan and proteins other than α-dystroglycan by like-glycosyltransferase.

Zhang P, Hu H.

Glycobiology. 2012 Feb;22(2):235-47. doi: 10.1093/glycob/cwr131. Epub 2011 Sep 19.

2.

LARGE expression augments the glycosylation of glycoproteins in addition to α-dystroglycan conferring laminin binding.

Zhang Z, Zhang P, Hu H.

PLoS One. 2011 Apr 20;6(4):e19080. doi: 10.1371/journal.pone.0019080.

3.

Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding.

Patnaik SK, Stanley P.

J Biol Chem. 2005 May 27;280(21):20851-9. Epub 2005 Mar 23.

4.

Large induces functional glycans in an O-mannosylation dependent manner and targets GlcNAc terminals on alpha-dystroglycan.

Hu Y, Li ZF, Wu X, Lu Q.

PLoS One. 2011 Feb 9;6(2):e16866. doi: 10.1371/journal.pone.0016866.

5.

Conditional knockout of protein O-mannosyltransferase 2 reveals tissue-specific roles of O-mannosyl glycosylation in brain development.

Hu H, Li J, Gagen CS, Gray NW, Zhang Z, Qi Y, Zhang P.

J Comp Neurol. 2011 May 1;519(7):1320-37. doi: 10.1002/cne.22572.

6.

Glycobiology of α-dystroglycan and muscular dystrophy.

Endo T.

J Biochem. 2015 Jan;157(1):1-12. doi: 10.1093/jb/mvu066. Epub 2014 Nov 7. Review.

PMID:
25381372
7.

HNK-1 sulfotransferase-dependent sulfation regulating laminin-binding glycans occurs in the post-phosphoryl moiety on α-dystroglycan.

Nakagawa N, Takematsu H, Oka S.

Glycobiology. 2013 Sep;23(9):1066-74. doi: 10.1093/glycob/cwt043. Epub 2013 May 30.

8.

AGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan.

Yagi H, Nakagawa N, Saito T, Kiyonari H, Abe T, Toda T, Wu SW, Khoo KH, Oka S, Kato K.

Sci Rep. 2013 Nov 21;3:3288. doi: 10.1038/srep03288.

9.

LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies.

Barresi R, Michele DE, Kanagawa M, Harper HA, Dovico SA, Satz JS, Moore SA, Zhang W, Schachter H, Dumanski JP, Cohn RD, Nishino I, Campbell KP.

Nat Med. 2004 Jul;10(7):696-703. Epub 2004 Jun 6.

10.

Absence of post-phosphoryl modification in dystroglycanopathy mouse models and wild-type tissues expressing non-laminin binding form of α-dystroglycan.

Kuga A, Kanagawa M, Sudo A, Chan YM, Tajiri M, Manya H, Kikkawa Y, Nomizu M, Kobayashi K, Endo T, Lu QL, Wada Y, Toda T.

J Biol Chem. 2012 Mar 16;287(12):9560-7. doi: 10.1074/jbc.M111.271767. Epub 2012 Jan 23.

11.

[Recent Advances in α-dystroglycanopathy].

Kuga A, Kanagawa M, Toda T.

Brain Nerve. 2011 Nov;63(11):1189-95. Review. Japanese.

PMID:
22068471
12.

Endogenous glucuronyltransferase activity of LARGE or LARGE2 required for functional modification of α-dystroglycan in cells and tissues.

Inamori K, Willer T, Hara Y, Venzke D, Anderson ME, Clarke NF, Guicheney P, Bönnemann CG, Moore SA, Campbell KP.

J Biol Chem. 2014 Oct 10;289(41):28138-48. doi: 10.1074/jbc.M114.597831. Epub 2014 Aug 19.

13.

Drosophila Dystroglycan is a target of O-mannosyltransferase activity of two protein O-mannosyltransferases, Rotated Abdomen and Twisted.

Nakamura N, Stalnaker SH, Lyalin D, Lavrova O, Wells L, Panin VM.

Glycobiology. 2010 Mar;20(3):381-94. doi: 10.1093/glycob/cwp189. Epub 2009 Dec 7.

14.

Developmental expression of the neuron-specific N-acetylglucosaminyltransferase Vb (GnT-Vb/IX) and identification of its in vivo glycan products in comparison with those of its paralog, GnT-V.

Lee JK, Matthews RT, Lim JM, Swanier K, Wells L, Pierce JM.

J Biol Chem. 2012 Aug 17;287(34):28526-36. doi: 10.1074/jbc.M112.367565. Epub 2012 Jun 19.

15.

High throughput screening for compounds that alter muscle cell glycosylation identifies new role for N-glycans in regulating sarcolemmal protein abundance and laminin binding.

Cabrera PV, Pang M, Marshall JL, Kung R, Nelson SF, Stalnaker SH, Wells L, Crosbie-Watson RH, Baum LG.

J Biol Chem. 2012 Jun 29;287(27):22759-70. doi: 10.1074/jbc.M111.334581. Epub 2012 May 8.

16.

Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy.

Brockington M, Torelli S, Prandini P, Boito C, Dolatshad NF, Longman C, Brown SC, Muntoni F.

Hum Mol Genet. 2005 Mar 1;14(5):657-65. Epub 2005 Jan 20.

PMID:
15661757
17.

O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding.

Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MB, Schachter H, Wells L, Campbell KP.

Science. 2010 Jan 1;327(5961):88-92. doi: 10.1126/science.1180512.

18.

GTDC2 modifies O-mannosylated α-dystroglycan in the endoplasmic reticulum to generate N-acetyl glucosamine epitopes reactive with CTD110.6 antibody.

Ogawa M, Nakamura N, Nakayama Y, Kurosaka A, Manya H, Kanagawa M, Endo T, Furukawa K, Okajima T.

Biochem Biophys Res Commun. 2013 Oct 11;440(1):88-93. doi: 10.1016/j.bbrc.2013.09.022. Epub 2013 Sep 13.

PMID:
24041696
19.

Dystroglycan and protein O-mannosyltransferases 1 and 2 are required to maintain integrity of Drosophila larval muscles.

Haines N, Seabrooke S, Stewart BA.

Mol Biol Cell. 2007 Dec;18(12):4721-30. Epub 2007 Sep 19.

20.

Supplemental Content

Support Center