Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 27

1.

Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy.

Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, Schiaffino S, Asahara H, Ushida T, Akimoto T.

J Biol Chem. 2011 Nov 4;286(44):38456-65. doi: 10.1074/jbc.M111.271270.

2.

miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export.

Hudson MB, Woodworth-Hobbs ME, Zheng B, Rahnert JA, Blount MA, Gooch JL, Searles CD, Price SR.

Am J Physiol Cell Physiol. 2014 Mar 15;306(6):C551-8. doi: 10.1152/ajpcell.00266.2013.

3.

miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle.

Hudson MB, Rahnert JA, Zheng B, Woodworth-Hobbs ME, Franch HA, Price SR.

Am J Physiol Cell Physiol. 2014 Aug 15;307(4):C314-9. doi: 10.1152/ajpcell.00395.2013.

4.

Overexpression of NF90-NF45 Represses Myogenic MicroRNA Biogenesis, Resulting in Development of Skeletal Muscle Atrophy and Centronuclear Muscle Fibers.

Todaka H, Higuchi T, Yagyu K, Sugiyama Y, Yamaguchi F, Morisawa K, Ono M, Fukushima A, Tsuda M, Taniguchi T, Sakamoto S.

Mol Cell Biol. 2015 Jul;35(13):2295-308. doi: 10.1128/MCB.01297-14.

5.

Molecular mechanisms modulating muscle mass.

Glass DJ.

Trends Mol Med. 2003 Aug;9(8):344-50. Review.

PMID:
12928036
6.

The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms.

Paul PK, Bhatnagar S, Mishra V, Srivastava S, Darnay BG, Choi Y, Kumar A.

Mol Cell Biol. 2012 Apr;32(7):1248-59. doi: 10.1128/MCB.06351-11.

7.

Dosing schedule-dependent attenuation of dexamethasone-induced muscle atrophy in mice.

Nakao R, Yamamoto S, Yasumoto Y, Oishi K.

Chronobiol Int. 2014 May;31(4):506-14. doi: 10.3109/07420528.2013.872654.

PMID:
24397304
8.

Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions.

Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G, Sandri M.

J Biol Chem. 2014 Aug 8;289(32):21909-25. doi: 10.1074/jbc.M114.561845.

9.

eIF3f: a central regulator of the antagonism atrophy/hypertrophy in skeletal muscle.

Sanchez AM, Csibi A, Raibon A, Docquier A, Lagirand-Cantaloube J, Leibovitch MP, Leibovitch SA, Bernardi H.

Int J Biochem Cell Biol. 2013 Oct;45(10):2158-62. doi: 10.1016/j.biocel.2013.06.001. Review.

PMID:
23769948
10.

Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression.

Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price SR, Mitch WE, Goldberg AL.

FASEB J. 2004 Jan;18(1):39-51.

PMID:
14718385
11.
12.

The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy.

Murton AJ, Constantin D, Greenhaff PL.

Biochim Biophys Acta. 2008 Dec;1782(12):730-43. doi: 10.1016/j.bbadis.2008.10.011. Review.

13.

Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice.

Egawa T, Goto A, Ohno Y, Yokoyama S, Ikuta A, Suzuki M, Sugiura T, Ohira Y, Yoshioka T, Hayashi T, Goto K.

Am J Physiol Endocrinol Metab. 2015 Oct 1;309(7):E651-62. doi: 10.1152/ajpendo.00165.2015.

14.

Acupuncture ameliorated skeletal muscle atrophy induced by hindlimb suspension in mice.

Onda A, Jiao Q, Nagano Y, Akimoto T, Miyamoto T, Minamisawa S, Fukubayashi T.

Biochem Biophys Res Commun. 2011 Jul 8;410(3):434-9. doi: 10.1016/j.bbrc.2011.05.152.

PMID:
21672518
15.

Effect of branched-chain amino acid supplementation during unloading on regulatory components of protein synthesis in atrophied soleus muscles.

Bajotto G, Sato Y, Kitaura Y, Shimomura Y.

Eur J Appl Physiol. 2011 Aug;111(8):1815-28. doi: 10.1007/s00421-010-1825-8.

PMID:
21222129
16.

Effects of a novel selective androgen receptor modulator on dexamethasone-induced and hypogonadism-induced muscle atrophy.

Jones A, Hwang DJ, Narayanan R, Miller DD, Dalton JT.

Endocrinology. 2010 Aug;151(8):3706-19. doi: 10.1210/en.2010-0150.

PMID:
20534726
17.

TLR2 deficiency attenuates skeletal muscle atrophy in mice.

Kim DS, Cha HN, Jo HJ, Song IH, Baek SH, Dan JM, Kim YW, Kim JY, Lee IK, Seo JS, Park SY.

Biochem Biophys Res Commun. 2015 Apr 10;459(3):534-40. doi: 10.1016/j.bbrc.2015.02.144.

PMID:
25749338
18.

MicroRNA in skeletal muscle development, growth, atrophy, and disease.

Kovanda A, Re┼żen T, Rogelj B.

Wiley Interdiscip Rev RNA. 2014 Jul-Aug;5(4):509-25. doi: 10.1002/wrna.1227. Review.

PMID:
24838768
19.

Identification of regulatory elements directing miR-23a-miR-27a-miR-24-2 transcriptional regulation in response to muscle hypertrophic stimuli.

Hernandez-Torres F, Aranega AE, Franco D.

Biochim Biophys Acta. 2014 Sep;1839(9):885-97. doi: 10.1016/j.bbagrm.2014.07.009.

PMID:
25050919
20.

MAFbx/Atrogin-1 expression is a poor index of muscle proteolysis.

Attaix D, Baracos VE.

Curr Opin Clin Nutr Metab Care. 2010 May;13(3):223-4. doi: 10.1097/MCO.0b013e328338b9a6. No abstract available.

PMID:
20393275

Supplemental Content

Support Center