Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 148

1.

Localized expression of tenascin in systemic sclerosis-associated pulmonary fibrosis and its regulation by insulin-like growth factor binding protein 3.

Brissett M, Veraldi KL, Pilewski JM, Medsger TA Jr, Feghali-Bostwick CA.

Arthritis Rheum. 2012 Jan;64(1):272-80. doi: 10.1002/art.30647.

2.

Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis.

Del Galdo F, Sotgia F, de Almeida CJ, Jasmin JF, Musick M, Lisanti MP, Jiménez SA.

Arthritis Rheum. 2008 Sep;58(9):2854-65. doi: 10.1002/art.23791.

4.

Depletion of protein kinase Cepsilon in normal and scleroderma lung fibroblasts has opposite effects on tenascin expression.

Tourkina E, Hoffman S, Fenton JW 2nd, Lipsitz S, Silver RM, Ludwicka-Bradley A.

Arthritis Rheum. 2001 Jun;44(6):1370-81.

5.

The membrane-associated adaptor protein DOK5 is upregulated in systemic sclerosis and associated with IGFBP-5-induced fibrosis.

Yasuoka H, Yamaguchi Y, Feghali-Bostwick CA.

PLoS One. 2014 Feb 13;9(2):e87754. doi: 10.1371/journal.pone.0087754. eCollection 2014.

6.

Growth differentiation factor 15, a marker of lung involvement in systemic sclerosis, is involved in fibrosis development but is not indispensable for fibrosis development.

Lambrecht S, Smith V, De Wilde K, Coudenys J, Decuman S, Deforce D, De Keyser F, Elewaut D.

Arthritis Rheumatol. 2014 Feb;66(2):418-27. doi: 10.1002/art.38241.

7.

Pivotal role of connective tissue growth factor in lung fibrosis: MAPK-dependent transcriptional activation of type I collagen.

Ponticos M, Holmes AM, Shi-wen X, Leoni P, Khan K, Rajkumar VS, Hoyles RK, Bou-Gharios G, Black CM, Denton CP, Abraham DJ, Leask A, Lindahl GE.

Arthritis Rheum. 2009 Jul;60(7):2142-55. doi: 10.1002/art.24620.

8.

Inhibition of activator protein 1 signaling abrogates transforming growth factor β-mediated activation of fibroblasts and prevents experimental fibrosis.

Avouac J, Palumbo K, Tomcik M, Zerr P, Dees C, Horn A, Maurer B, Akhmetshina A, Beyer C, Sadowski A, Schneider H, Shiozawa S, Distler O, Schett G, Allanore Y, Distler JH.

Arthritis Rheum. 2012 May;64(5):1642-52. doi: 10.1002/art.33501.

9.

The transcription factor Fra-2 regulates the production of extracellular matrix in systemic sclerosis.

Reich N, Maurer B, Akhmetshina A, Venalis P, Dees C, Zerr P, Palumbo K, Zwerina J, Nevskaya T, Gay S, Distler O, Schett G, Distler JH.

Arthritis Rheum. 2010 Jan;62(1):280-90. doi: 10.1002/art.25056.

10.

Lung tissues in patients with systemic sclerosis have gene expression patterns unique to pulmonary fibrosis and pulmonary hypertension.

Hsu E, Shi H, Jordan RM, Lyons-Weiler J, Pilewski JM, Feghali-Bostwick CA.

Arthritis Rheum. 2011 Mar;63(3):783-94. doi: 10.1002/art.30159.

11.

Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis.

Ruiz XD, Mlakar LR, Yamaguchi Y, Su Y, Larregina AT, Pilewski JM, Feghali-Bostwick CA.

PLoS One. 2012;7(8):e43049. doi: 10.1371/journal.pone.0043049. Epub 2012 Aug 10.

12.

Elevated serum insulin-like growth factor (IGF-1) and IGF binding protein-3 levels in patients with systemic sclerosis: possible role in development of fibrosis.

Hamaguchi Y, Fujimoto M, Matsushita T, Hasegawa M, Takehara K, Sato S.

J Rheumatol. 2008 Dec;35(12):2363-71. doi: 10.3899/jrheum.080340. Epub 2008 Nov 1.

PMID:
19004037
13.

The nuclear receptor constitutive androstane receptor/NR1I3 enhances the profibrotic effects of transforming growth factor β and contributes to the development of experimental dermal fibrosis.

Avouac J, Palumbo-Zerr K, Ruzehaji N, Tomcik M, Zerr P, Dees C, Distler A, Beyer C, Schneider H, Distler O, Schett G, Allanore Y, Distler JH.

Arthritis Rheumatol. 2014 Nov;66(11):3140-50. doi: 10.1002/art.38819.

14.
15.

Angiotensin II in the lesional skin of systemic sclerosis patients contributes to tissue fibrosis via angiotensin II type 1 receptors.

Kawaguchi Y, Takagi K, Hara M, Fukasawa C, Sugiura T, Nishimagi E, Harigai M, Kamatani N.

Arthritis Rheum. 2004 Jan;50(1):216-26.

16.
17.

Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma.

Sonnylal S, Denton CP, Zheng B, Keene DR, He R, Adams HP, Vanpelt CS, Geng YJ, Deng JM, Behringer RR, de Crombrugghe B.

Arthritis Rheum. 2007 Jan;56(1):334-44.

18.

Smad1 pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate.

Pannu J, Asano Y, Nakerakanti S, Smith E, Jablonska S, Blaszczyk M, ten Dijke P, Trojanowska M.

Arthritis Rheum. 2008 Aug;58(8):2528-37. doi: 10.1002/art.23698.

19.

Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor β-dependent mesenchymal-to-mesenchymal transition.

Serratì S, Chillà A, Laurenzana A, Margheri F, Giannoni E, Magnelli L, Chiarugi P, Dotor J, Feijoo E, Bazzichi L, Bombardieri S, Kahaleh B, Fibbi G, Del Rosso M.

Arthritis Rheum. 2013 Jan;65(1):258-69. doi: 10.1002/art.37705.

20.

A novel inhibitor of Smad-dependent transcriptional activation suppresses tissue fibrosis in mouse models of systemic sclerosis.

Hasegawa M, Matsushita Y, Horikawa M, Higashi K, Tomigahara Y, Kaneko H, Shirasaki F, Fujimoto M, Takehara K, Sato S.

Arthritis Rheum. 2009 Nov;60(11):3465-75. doi: 10.1002/art.24934.

Supplemental Content

Support Center