Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

SMURF1 amplification promotes invasiveness in pancreatic cancer.

Kwei KA, Shain AH, Bair R, Montgomery K, Karikari CA, van de Rijn M, Hidalgo M, Maitra A, Bashyam MD, Pollack JR.

PLoS One. 2011;6(8):e23924. doi: 10.1371/journal.pone.0023924. Epub 2011 Aug 22.

2.

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Suzuki A, Shibata T, Shimada Y, Murakami Y, Horii A, Shiratori K, Hirohashi S, Inazawa J, Imoto I.

Cancer Sci. 2008 May;99(5):986-94. doi: 10.1111/j.1349-7006.2008.00779.x.

3.

Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer.

Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A.

Genes Chromosomes Cancer. 2009 Apr;48(4):330-9. doi: 10.1002/gcc.20643.

PMID:
19145645
4.

Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer.

Kwei KA, Bashyam MD, Kao J, Ratheesh R, Reddy EC, Kim YH, Montgomery K, Giacomini CP, Choi YL, Chatterjee S, Karikari CA, Salari K, Wang P, Hernandez-Boussard T, Swarnalata G, van de Rijn M, Maitra A, Pollack JR.

PLoS Genet. 2008 May 23;4(5):e1000081. doi: 10.1371/journal.pgen.1000081.

5.

Integrative genomic and functional profiling of the pancreatic cancer genome.

Shain AH, Salari K, Giacomini CP, Pollack JR.

BMC Genomics. 2013 Sep 16;14:624. doi: 10.1186/1471-2164-14-624.

6.

Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer.

Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, Tibshirani R, Maitra A, Pollack JR.

Neoplasia. 2005 Jun;7(6):556-62.

7.

SMURF1 silencing diminishes a CD44-high cancer stem cell-like population in head and neck squamous cell carcinoma.

Khammanivong A, Gopalakrishnan R, Dickerson EB.

Mol Cancer. 2014 Dec 3;13:260. doi: 10.1186/1476-4598-13-260.

8.

Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA.

Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, Testa JR.

Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3636-41.

9.

Fibroblast growth factor receptor 1 gene amplification in pancreatic ductal adenocarcinoma.

Lehnen NC, von Mässenhausen A, Kalthoff H, Zhou H, Glowka T, Schütte U, Höller T, Riesner K, Boehm D, Merkelbach-Bruse S, Kirfel J, Perner S, Gütgemann I.

Histopathology. 2013 Aug;63(2):157-66. doi: 10.1111/his.12115. Epub 2013 Jun 28. Erratum in: Histopathology. 2013 Dec;63(6):886.

PMID:
23808822
10.

SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion.

Kwon A, Lee HL, Woo KM, Ryoo HM, Baek JH.

Mol Cells. 2013 Dec;36(6):548-55. doi: 10.1007/s10059-013-0233-4. Epub 2013 Nov 14.

11.

PPAPDC1B and WHSC1L1 are common drivers of the 8p11-12 amplicon, not only in breast tumors but also in pancreatic adenocarcinomas and lung tumors.

Mahmood SF, Gruel N, Nicolle R, Chapeaublanc E, Delattre O, Radvanyi F, Bernard-Pierrot I.

Am J Pathol. 2013 Nov;183(5):1634-44. doi: 10.1016/j.ajpath.2013.07.028. Epub 2013 Sep 17.

PMID:
24051013
12.

TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway.

Sánchez NS, Barnett JV.

Cell Signal. 2012 Feb;24(2):539-48. doi: 10.1016/j.cellsig.2011.10.006. Epub 2011 Oct 14.

13.

Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification.

Kuuselo R, Savinainen K, Azorsa DO, Basu GD, Karhu R, Tuzmen S, Mousses S, Kallioniemi A.

Cancer Res. 2007 Mar 1;67(5):1943-9.

14.

Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells.

Fukunaga E, Inoue Y, Komiya S, Horiguchi K, Goto K, Saitoh M, Miyazawa K, Koinuma D, Hanyu A, Imamura T.

J Biol Chem. 2008 Dec 19;283(51):35660-7. doi: 10.1074/jbc.M710496200. Epub 2008 Oct 16.

15.

Androgens regulate SMAD ubiquitination regulatory factor-1 expression and prostate cancer cell invasion.

Gang X, Wang G, Huang H.

Prostate. 2015 May;75(6):561-72. doi: 10.1002/pros.22935. Epub 2015 Jan 28.

16.

Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts.

Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, Boyce BF, Xing L.

J Biol Chem. 2006 Feb 17;281(7):4326-33. Epub 2005 Dec 22.

17.

DeltaNp63alpha-mediated induction of epidermal growth factor receptor promotes pancreatic cancer cell growth and chemoresistance.

Danilov AV, Neupane D, Nagaraja AS, Feofanova EV, Humphries LA, DiRenzo J, Korc M.

PLoS One. 2011;6(10):e26815. doi: 10.1371/journal.pone.0026815. Epub 2011 Oct 28.

18.

Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation.

Xie Y, Avello M, Schirle M, McWhinnie E, Feng Y, Bric-Furlong E, Wilson C, Nathans R, Zhang J, Kirschner MW, Huang SM, Cong F.

J Biol Chem. 2013 Feb 1;288(5):2976-85. doi: 10.1074/jbc.M112.430066. Epub 2012 Nov 26.

19.

Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer.

Kim YH, Kwei KA, Girard L, Salari K, Kao J, Pacyna-Gengelbach M, Wang P, Hernandez-Boussard T, Gazdar AF, Petersen I, Minna JD, Pollack JR.

Oncogene. 2010 Mar 11;29(10):1421-30. doi: 10.1038/onc.2009.437. Epub 2009 Dec 7.

20.

Tumor necrosis factor-α enhances the transcription of Smad ubiquitination regulatory factor 1 in an activating protein-1- and Runx2-dependent manner.

Lee HL, Yi T, Baek K, Kwon A, Hwang HR, Qadir AS, Park HJ, Woo KM, Ryoo HM, Kim GS, Baek JH.

J Cell Physiol. 2013 May;228(5):1076-86. doi: 10.1002/jcp.24256.

PMID:
23042144

Supplemental Content

Support Center