Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Control of embryonic stem cell lineage commitment by core promoter factor, TAF3.

Liu Z, Scannell DR, Eisen MB, Tjian R.

Cell. 2011 Sep 2;146(5):720-31. doi: 10.1016/j.cell.2011.08.005.

2.

Conserved, developmentally regulated mechanism couples chromosomal looping and heterochromatin barrier activity at the homeobox gene A locus.

Kim YJ, Cecchini KR, Kim TH.

Proc Natl Acad Sci U S A. 2011 May 3;108(18):7391-6. doi: 10.1073/pnas.1018279108. Epub 2011 Apr 18. Erratum in: Proc Natl Acad Sci U S A. 2011 Nov;108(47):19096.

3.

Architectural protein subclasses shape 3D organization of genomes during lineage commitment.

Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong CT, Hookway TA, Guo C, Sun Y, Bland MJ, Wagstaff W, Dalton S, McDevitt TC, Sen R, Dekker J, Taylor J, Corces VG.

Cell. 2013 Jun 6;153(6):1281-95. doi: 10.1016/j.cell.2013.04.053. Epub 2013 May 23.

4.

The genomic landscape of cohesin-associated chromatin interactions.

DeMare LE, Leng J, Cotney J, Reilly SK, Yin J, Sarro R, Noonan JP.

Genome Res. 2013 Aug;23(8):1224-34. doi: 10.1101/gr.156570.113. Epub 2013 May 23.

5.

Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.

Hanssen LLP, Kassouf MT, Oudelaar AM, Biggs D, Preece C, Downes DJ, Gosden M, Sharpe JA, Sloane-Stanley JA, Hughes JR, Davies B, Higgs DR.

Nat Cell Biol. 2017 Aug;19(8):952-961. doi: 10.1038/ncb3573. Epub 2017 Jul 24.

PMID:
28737770
6.

Mediator and cohesin connect gene expression and chromatin architecture.

Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA.

Nature. 2010 Sep 23;467(7314):430-5. doi: 10.1038/nature09380. Epub 2010 Aug 18. Erratum in: Nature. 2011 Apr 14;472(7342):247.

7.

Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development.

Marsman J, O'Neill AC, Kao BR, Rhodes JM, Meier M, Antony J, Mönnich M, Horsfield JA.

Biochim Biophys Acta. 2014 Jan;1839(1):50-61. doi: 10.1016/j.bbagrm.2013.11.007. Epub 2013 Dec 7.

PMID:
24321385
8.

Cohesin: genomic insights into controlling gene transcription and development.

Dorsett D.

Curr Opin Genet Dev. 2011 Apr;21(2):199-206. doi: 10.1016/j.gde.2011.01.018. Epub 2011 Feb 14. Review.

9.

CTCF Binding Polarity Determines Chromatin Looping.

de Wit E, Vos ES, Holwerda SJ, Valdes-Quezada C, Verstegen MJ, Teunissen H, Splinter E, Wijchers PJ, Krijger PH, de Laat W.

Mol Cell. 2015 Nov 19;60(4):676-84. doi: 10.1016/j.molcel.2015.09.023. Epub 2015 Oct 29.

10.

Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells.

Kidder BL, Yang J, Palmer S.

PLoS One. 2008;3(12):e3932. doi: 10.1371/journal.pone.0003932. Epub 2008 Dec 11.

11.

The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output.

Stijf-Bultsma Y, Sommer L, Tauber M, Baalbaki M, Giardoglou P, Jones DR, Gelato KA, van Pelt J, Shah Z, Rahnamoun H, Toma C, Anderson KE, Hawkins P, Lauberth SM, Haramis AP, Hart D, Fischle W, Divecha N.

Mol Cell. 2015 May 7;58(3):453-67. doi: 10.1016/j.molcel.2015.03.009. Epub 2015 Apr 9.

12.

Subnuclear segregation of genes and core promoter factors in myogenesis.

Yao J, Fetter RD, Hu P, Betzig E, Tjian R.

Genes Dev. 2011 Mar 15;25(6):569-80. doi: 10.1101/gad.2021411. Epub 2011 Feb 28.

13.

Core promoter factor TAF9B regulates neuronal gene expression.

Herrera FJ, Yamaguchi T, Roelink H, Tjian R.

Elife. 2014 Jul 8;3:e02559. doi: 10.7554/eLife.02559.

14.

Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes.

Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, Weintraub AS, Schujiers J, Lee TI, Zhao K, Young RA.

Cell. 2014 Oct 9;159(2):374-387. doi: 10.1016/j.cell.2014.09.030.

15.

Selective interaction between Trf3 and Taf3 required for early development and hematopoiesis.

Hart DO, Santra MK, Raha T, Green MR.

Dev Dyn. 2009 Oct;238(10):2540-9. doi: 10.1002/dvdy.22083.

16.

Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules.

Faure AJ, Schmidt D, Watt S, Schwalie PC, Wilson MD, Xu H, Ramsay RG, Odom DT, Flicek P.

Genome Res. 2012 Nov;22(11):2163-75. doi: 10.1101/gr.136507.111. Epub 2012 Jul 10.

17.

Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells.

Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van IJcken WF, Grosveld FG, Ren B, Wendt KS.

Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):996-1001. doi: 10.1073/pnas.1317788111. Epub 2013 Dec 13.

18.

MyoD targets TAF3/TRF3 to activate myogenin transcription.

Deato MD, Marr MT, Sottero T, Inouye C, Hu P, Tjian R.

Mol Cell. 2008 Oct 10;32(1):96-105. doi: 10.1016/j.molcel.2008.09.009.

19.

A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection.

Deng Z, Wang Z, Stong N, Plasschaert R, Moczan A, Chen HS, Hu S, Wikramasinghe P, Davuluri RV, Bartolomei MS, Riethman H, Lieberman PM.

EMBO J. 2012 Nov 5;31(21):4165-78. doi: 10.1038/emboj.2012.266. Epub 2012 Sep 25.

20.

Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.

Hosseinpour B, Bakhtiarizadeh MR, Khosravi P, Ebrahimie E.

Gene. 2013 Dec 1;531(2):212-9. doi: 10.1016/j.gene.2013.09.011. Epub 2013 Sep 13.

PMID:
24042128

Supplemental Content

Support Center