Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104


Direct cloning of double-stranded RNAs from RNase protection analysis reveals processing patterns of C/D box snoRNAs and provides evidence for widespread antisense transcript expression.

Shen M, Eyras E, Wu J, Khanna A, Josiah S, Rederstorff M, Zhang MQ, Stamm S.

Nucleic Acids Res. 2011 Dec;39(22):9720-30. doi: 10.1093/nar/gkr684.


Processing of snoRNAs as a new source of regulatory non-coding RNAs: snoRNA fragments form a new class of functional RNAs.

Falaleeva M, Stamm S.

Bioessays. 2013 Jan;35(1):46-54. doi: 10.1002/bies.201200117. Review.


Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast.

Qu LH, Henras A, Lu YJ, Zhou H, Zhou WX, Zhu YQ, Zhao J, Henry Y, Caizergues-Ferrer M, Bachellerie JP.

Mol Cell Biol. 1999 Feb;19(2):1144-58.


Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing.

Kishore S, Gruber AR, Jedlinski DJ, Syed AP, Jorjani H, Zavolan M.

Genome Biol. 2013 May 26;14(5):R45. doi: 10.1186/gb-2013-14-5-r45.


Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs.

Li Z, Ender C, Meister G, Moore PS, Chang Y, John B.

Nucleic Acids Res. 2012 Aug;40(14):6787-99. doi: 10.1093/nar/gks307.


Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs.

Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J.

Nucleic Acids Res. 2011 Jan;39(2):675-86. doi: 10.1093/nar/gkq776.


Small nucleolar RNA interference induced by antisense or double-stranded RNA in trypanosomatids.

Liang XH, Liu Q, Michaeli S.

Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7521-6.


The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing.

Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, Beach C, Nicholls RD, Zavolan M, Stamm S.

Hum Mol Genet. 2010 Apr 1;19(7):1153-64. doi: 10.1093/hmg/ddp585.


RNomics: an experimental approach that identifies 201 candidates for novel, small, non-messenger RNAs in mouse.

Hüttenhofer A, Kiefmann M, Meier-Ewert S, O'Brien J, Lehrach H, Bachellerie JP, Brosius J.

EMBO J. 2001 Jun 1;20(11):2943-53.


Computational prediction and validation of C/D, H/ACA and Eh_U3 snoRNAs of Entamoeba histolytica.

Kaur D, Gupta AK, Kumari V, Sharma R, Bhattacharya A, Bhattacharya S.

BMC Genomics. 2012 Aug 14;13:390. doi: 10.1186/1471-2164-13-390.


Systematic identification and characterization of porcine snoRNAs: structural, functional and developmental insights.

Liu N, Xiao B, Ren HY, Tang ZL, Li K.

Anim Genet. 2013 Feb;44(1):24-33. doi: 10.1111/j.1365-2052.2012.02363.x.


Genome-wide analysis of small nucleolar RNAs of Leishmania major reveals a rich repertoire of RNAs involved in modification and processing of rRNA.

Eliaz D, Doniger T, Tkacz ID, Biswas VK, Gupta SK, Kolev NG, Unger R, Ullu E, Tschudi C, Michaeli S.

RNA Biol. 2015;12(11):1222-55. doi: 10.1080/15476286.2015.1038019.


Brain-specific small nucleolar RNAs.

Rogelj B.

J Mol Neurosci. 2006;28(2):103-9. Review.


SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights.

Liu N, Xiao ZD, Yu CH, Shao P, Liang YT, Guan DG, Yang JH, Chen CL, Qu LH, Zhou H.

BMC Genomics. 2009 Nov 8;10:515. doi: 10.1186/1471-2164-10-515.


Human box C/D snoRNA processing conservation across multiple cell types.

Scott MS, Ono M, Yamada K, Endo A, Barton GJ, Lamond AI.

Nucleic Acids Res. 2012 Apr;40(8):3676-88. doi: 10.1093/nar/gkr1233.

Supplemental Content

Support Center