Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Biocompatibility of bone graft substitutes: effects on survival and proliferation of porcine multilineage stem cells in vitro.

Zimmermann CE, Gierloff M, Hedderich J, Açil Y, Wiltfang J, Terheyden H.

Folia Morphol (Warsz). 2011 Aug;70(3):154-60.

PMID:
21866525
2.

Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro.

Seebach C, Schultheiss J, Wilhelm K, Frank J, Henrich D.

Injury. 2010 Jul;41(7):731-8. doi: 10.1016/j.injury.2010.02.017. Epub 2010 Mar 15.

PMID:
20233614
3.

Bone morphogenic protein-2 (BMP-2) loaded nanoparticles mixed with human mesenchymal stem cell in fibrin hydrogel for bone tissue engineering.

Park KH, Kim H, Moon S, Na K.

J Biosci Bioeng. 2009 Dec;108(6):530-7. doi: 10.1016/j.jbiosc.2009.05.021.

PMID:
19914589
4.

Effect of osteoclast co-culture on the differentiation of human mesenchymal stem cells grown on bone graft granules.

Sinclair SS, Burg KJ.

J Biomater Sci Polym Ed. 2011;22(4-6):789-808. doi: 10.1163/092050610X496260. Epub 2010 Jun 21.

PMID:
20566059
5.

Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue.

Müller AM, Mehrkens A, Schäfer DJ, Jaquiery C, Güven S, Lehmicke M, Martinetti R, Farhadi I, Jakob M, Scherberich A, Martin I.

Eur Cell Mater. 2010 Mar 3;19:127-35.

6.

Proliferation and osteogenic differentiation of mesenchymal stem cells cultured onto three different polymers in vitro.

Jäger M, Feser T, Denck H, Krauspe R.

Ann Biomed Eng. 2005 Oct;33(10):1319-32.

PMID:
16240081
7.

Biocompatibility studies on fibrin glue cultured with bone marrow mesenchymal stem cells in vitro.

Fang H, Peng S, Chen A, Li F, Ren K, Hu N.

J Huazhong Univ Sci Technolog Med Sci. 2004;24(3):272-4.

PMID:
15315346
8.

[Biocompatibility between human adipose-derived mesenchymal stem cells and porcine bone scaffolds].

Zhang XQ, Yuag L, Yang LL, Jang XM, Yang C, Yu L, Dai JX.

Nan Fang Yi Ke Da Xue Xue Bao. 2009 Apr;29(4):638-41. Chinese.

9.

The performance of human periodontal ligament mesenchymal stem cells on xenogenic biomaterials.

Trubiani O, Scarano A, Orsini G, Di Iorio D, D'Arcangelo C, Piccirilli M, Sigismondo M, Caputi S.

Int J Immunopathol Pharmacol. 2007 Jan-Mar;20(1 Suppl 1):87-91.

PMID:
17897507
10.

Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture.

Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T.

J Cell Physiol. 2005 Nov;205(2):194-201.

PMID:
15880640
11.

Surface- and nonsurface-dependent in vitro effects of bone substitutes on cell viability.

Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J.

Clin Oral Investig. 2009 Jun;13(2):149-55. doi: 10.1007/s00784-008-0214-8. Epub 2008 Aug 8.

PMID:
18688661
12.

Ablation of proliferating marrow with 5-fluorouracil allows partial purification of mesenchymal stem cells.

Wang Z, Song J, Taichman RS, Krebsbach PH.

Stem Cells. 2006 Jun;24(6):1573-82.

13.

Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells.

Sohier J, Corre P, Weiss P, Layrolle P.

Acta Biomater. 2010 Aug;6(8):2932-9. doi: 10.1016/j.actbio.2010.02.013. Epub 2010 Feb 10.

PMID:
20152947
14.

Effects of wollastonite on proliferation and differentiation of human bone marrow-derived stromal cells in PHBV/wollastonite composite scaffolds.

Li H, Zhai W, Chang J.

J Biomater Appl. 2009 Sep;24(3):231-46. doi: 10.1177/0885328208096043. Epub 2008 Nov 5.

PMID:
18987024
15.

Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.

Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Charbord P, Delorme B, Reis RL, Neves NM.

Biomacromolecules. 2009 Aug 10;10(8):2067-73. doi: 10.1021/bm9000102.

PMID:
19621927
16.

Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold.

Kazemnejad S, Allameh A, Soleimani M, Gharehbaghian A, Mohammadi Y, Amirizadeh N, Jazayery M.

J Gastroenterol Hepatol. 2009 Feb;24(2):278-87. doi: 10.1111/j.1440-1746.2008.05530.x. Epub 2008 Aug 24.

PMID:
18752558
17.

Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering.

Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V.

Biomaterials. 2009 Jul;30(21):3551-9. doi: 10.1016/j.biomaterials.2009.03.024. Epub 2009 Apr 9.

PMID:
19361857
18.

In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.

Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL.

Biomaterials. 2005 Dec;26(34):7082-94.

PMID:
15985292
19.

Cytocompatibility of polymer-based periodontal bone substitutes in gingival fibroblast and MC3T3 osteoblast cell cultures.

Ruediger T, Berg A, Guellmar A, Rode C, Schnabelrauch M, Urbanek A, Wagner K, Wyrwa R, Kinne RW, Sigusch BW.

Dent Mater. 2012 Oct;28(10):e239-49. doi: 10.1016/j.dental.2012.05.008. Epub 2012 Jun 23.

PMID:
22727357
20.

DNA image cytometry and Ag-NORs-staining application in biocompatibility studies on human osteoblast cells in vitro.

Josset Y, Oum'hamed Z, Zarrinpour A, Lorenzato M, Adnet JJ, Laurent-Maquin D.

Biomaterials. 1998 Oct;19(19):1791-8.

PMID:
9856590

Supplemental Content

Support Center