Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Polycystin-1 is required for stereocilia structure but not for mechanotransduction in inner ear hair cells.

Steigelman KA, Lelli A, Wu X, Gao J, Lin S, Piontek K, Wodarczyk C, Boletta A, Kim H, Qian F, Germino G, Géléoc GS, Holt JR, Zuo J.

J Neurosci. 2011 Aug 24;31(34):12241-50. doi: 10.1523/JNEUROSCI.6531-10.2011.

2.

TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian Inner Ear Hair Cell Stereocilia.

Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, Choi BY, Monahan K, Holt JR, Griffith AJ, Kachar B.

Cell Rep. 2015 Sep 8;12(10):1606-17. doi: 10.1016/j.celrep.2015.07.058. Epub 2015 Aug 28.

3.

A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus.

Wodarczyk C, Rowe I, Chiaravalli M, Pema M, Qian F, Boletta A.

PLoS One. 2009 Sep 23;4(9):e7137. doi: 10.1371/journal.pone.0007137.

4.

Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes.

Kawashima Y, Géléoc GS, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ.

J Clin Invest. 2011 Dec;121(12):4796-809. doi: 10.1172/JCI60405. Epub 2011 Nov 21.

5.

Fast adaptation and Ca2+ sensitivity of the mechanotransducer require myosin-XVa in inner but not outer cochlear hair cells.

Stepanyan R, Frolenkov GI.

J Neurosci. 2009 Apr 1;29(13):4023-34. doi: 10.1523/JNEUROSCI.4566-08.2009.

6.

A novel Atoh1 "self-terminating" mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability.

Pan N, Jahan I, Kersigo J, Duncan JS, Kopecky B, Fritzsch B.

PLoS One. 2012;7(1):e30358. doi: 10.1371/journal.pone.0030358. Epub 2012 Jan 18.

7.

Role of the polycytin-primary cilia complex in bone development and mechanosensing.

Xiao ZS, Quarles LD.

Ann N Y Acad Sci. 2010 Mar;1192:410-21. doi: 10.1111/j.1749-6632.2009.05239.x. Review.

8.

Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear.

Takumida M, Anniko M.

Acta Otolaryngol. 2010 Feb;130(2):196-203. doi: 10.3109/00016480903013593.

PMID:
20095091
9.

Localization and developmental expression of BK channels in mammalian cochlear hair cells.

Hafidi A, Beurg M, Dulon D.

Neuroscience. 2005;130(2):475-84.

PMID:
15664704
10.

Transient receptor potential melastatin 1: a hair cell transduction channel candidate.

Gerka-Stuyt J, Au A, Peachey NS, Alagramam KN.

PLoS One. 2013 Oct 11;8(10):e77213. doi: 10.1371/journal.pone.0077213. eCollection 2013.

11.

Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea.

Zilberstein Y, Liberman MC, Corfas G.

J Neurosci. 2012 Jan 11;32(2):405-10. doi: 10.1523/JNEUROSCI.4678-11.2012. Erratum in: J Neurosci. 2012 Apr 4;32(14):5016.

12.

Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells.

Shin JB, Adams D, Paukert M, Siba M, Sidi S, Levin M, Gillespie PG, Gründer S.

Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12572-7. Epub 2005 Aug 22.

13.

Auditory mechanotransduction in the absence of functional myosin-XVa.

Stepanyan R, Belyantseva IA, Griffith AJ, Friedman TB, Frolenkov GI.

J Physiol. 2006 Nov 1;576(Pt 3):801-8. Epub 2006 Sep 14.

14.

Molecular characterization of the ankle-link complex in cochlear hair cells and its role in the hair bundle functioning.

Michalski N, Michel V, Bahloul A, Lefèvre G, Barral J, Yagi H, Chardenoux S, Weil D, Martin P, Hardelin JP, Sato M, Petit C.

J Neurosci. 2007 Jun 13;27(24):6478-88.

15.

LKB1 Is Required for the Development and Maintenance of Stereocilia in Inner Ear Hair Cells in Mice.

Men Y, Zhang A, Li H, Zhang T, Jin Y, Li H, Zhang J, Gao J.

PLoS One. 2015 Aug 14;10(8):e0135841. doi: 10.1371/journal.pone.0135841. eCollection 2015.

16.

Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.

Pedrozo Z, Criollo A, Battiprolu PK, Morales CR, Contreras-Ferrat A, Fernández C, Jiang N, Luo X, Caplan MJ, Somlo S, Rothermel BA, Gillette TG, Lavandero S, Hill JA.

Circulation. 2015 Jun 16;131(24):2131-42. doi: 10.1161/CIRCULATIONAHA.114.013537. Epub 2015 Apr 17.

17.

MiR-210 promotes sensory hair cell formation in the organ of corti.

Riccardi S, Bergling S, Sigoillot F, Beibel M, Werner A, Leighton-Davies J, Knehr J, Bouwmeester T, Parker CN, Roma G, Kinzel B.

BMC Genomics. 2016 Apr 27;17:309. doi: 10.1186/s12864-016-2620-7.

18.

Gfi1-Cre knock-in mouse line: A tool for inner ear hair cell-specific gene deletion.

Yang H, Gan J, Xie X, Deng M, Feng L, Chen X, Gao Z, Gan L.

Genesis. 2010 Jun;48(6):400-6. doi: 10.1002/dvg.20632.

19.

The deaf mouse mutant whirler suggests a role for whirlin in actin filament dynamics and stereocilia development.

Mogensen MM, Rzadzinska A, Steel KP.

Cell Motil Cytoskeleton. 2007 Jul;64(7):496-508.

20.

β-actin and γ-actin are each dispensable for auditory hair cell development but required for Stereocilia maintenance.

Perrin BJ, Sonnemann KJ, Ervasti JM.

PLoS Genet. 2010 Oct 14;6(10):e1001158. doi: 10.1371/journal.pgen.1001158.

Supplemental Content

Support Center