Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 199

1.

A high-throughput dielectrophoresis-based cell electrofusion microfluidic device.

Hu N, Yang J, Yin ZQ, Ai Y, Qian S, Svir IB, Xia B, Yan JW, Hou WS, Zheng XL.

Electrophoresis. 2011 Sep;32(18):2488-95. doi: 10.1002/elps.201100082. Epub 2011 Aug 19.

PMID:
21853446
2.

A cell electrofusion microfluidic chip using discrete coplanar vertical sidewall microelectrodes.

Hu N, Yang J, Qian S, Zhang X, Joo SW, Zheng X.

Electrophoresis. 2012 Jul;33(13):1980-6. doi: 10.1002/elps.201100579.

PMID:
22806463
3.

Microorifice-based high-yield cell fusion on microfluidic chip: electrofusion of selected pairs and fusant viability.

Gel M, Suzuki S, Kimura Y, Kurosawa O, Techaumnat B, Oana H, Washizu M.

IEEE Trans Nanobioscience. 2009 Dec;8(4):300-5. doi: 10.1109/TNB.2009.2035252.

PMID:
20142145
4.

A novel micropit device integrates automated cell positioning by dielectrophoresis and nuclear transfer by electrofusion.

Clow AL, Gaynor PT, Oback BJ.

Biomed Microdevices. 2010 Oct;12(5):777-86. doi: 10.1007/s10544-010-9432-3.

PMID:
20499188
5.

A cell electrofusion microfluidic device integrated with 3D thin-film microelectrode arrays.

Hu N, Yang J, Qian S, Joo SW, Zheng X.

Biomicrofluidics. 2011 Sep;5(3):34121-3412112. doi: 10.1063/1.3630125. Epub 2011 Aug 30.

6.

Dielectrophoresis-assisted massively parallel cell pairing and fusion based on field constriction created by a micro-orifice array sheet.

Kimura Y, Gel M, Techaumnat B, Oana H, Kotera H, Washizu M.

Electrophoresis. 2011 Sep;32(18):2496-501. doi: 10.1002/elps.201100129. Epub 2011 Aug 23.

PMID:
21874655
7.

A microfluidic device for electrofusion of biological vesicles.

Tresset G, Takeuchi S.

Biomed Microdevices. 2004 Sep;6(3):213-8.

PMID:
15377830
8.

Electroformation and electrofusion of giant vesicles in a microfluidic device.

Wang Z, Hu N, Yeh LH, Zheng X, Yang J, Joo SW, Qian S.

Colloids Surf B Biointerfaces. 2013 Oct 1;110:81-7. doi: 10.1016/j.colsurfb.2013.04.042. Epub 2013 Apr 30.

PMID:
23711780
9.

High-resolution analyses of cell fusion dynamics in a biochip.

Mottet G, Le Pioufle B, Mir LM.

Electrophoresis. 2012 Aug;33(16):2508-15. doi: 10.1002/elps.201200112.

PMID:
22899258
10.

Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.

Jen CP, Weng CH, Huang CT.

Electrophoresis. 2011 Sep;32(18):2428-35. doi: 10.1002/elps.201100085. Epub 2011 Aug 23.

PMID:
21874653
11.

Highly controlled electrofusion of individually selected cells in dielectrophoretic field cages.

Kirschbaum M, Guernth-Marschner CR, Cherré S, de Pablo Peña A, Jaeger MS, Kroczek RA, Schnelle T, Mueller T, Duschl C.

Lab Chip. 2012 Feb 7;12(3):443-50. doi: 10.1039/c1lc20818g. Epub 2011 Nov 29.

PMID:
22124613
12.

How medium osmolarity influences dielectrophoretically assisted on-chip electrofusion.

Hamdi FS, Français O, Dufour-Gergam E, Le Pioufle B.

Bioelectrochemistry. 2014 Dec;100:27-35. doi: 10.1016/j.bioelechem.2014.05.004. Epub 2014 Jun 14.

PMID:
25012938
13.

On chip electrofusion of single human B cells and mouse myeloma cells for efficient hybridoma generation.

Kemna EW, Wolbers F, Vermes I, van den Berg A.

Electrophoresis. 2011 Nov;32(22):3138-46. doi: 10.1002/elps.201100227. Epub 2011 Oct 25. Erratum in: Electrophoresis. 2012 Apr;33(7):1225.

PMID:
22025094
14.

Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis.

de la Rosa C, Tilley PA, Fox JD, Kaler KV.

IEEE Trans Biomed Eng. 2008 Oct;55(10):2426-32. doi: 10.1109/TBME.2008.923148.

PMID:
18838368
15.

Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures.

Jen CP, Chen TW.

Biomed Microdevices. 2009 Jun;11(3):597-607. doi: 10.1007/s10544-008-9269-1.

PMID:
19104941
16.

Reorientation of microfluidic channel enables versatile dielectrophoretic platforms for cell manipulations.

Tang SY, Zhang W, Yi P, Baratchi S, Kalantar-zadeh K, Khoshmanesh K.

Electrophoresis. 2013 May;34(9-10):1407-14. doi: 10.1002/elps.201200659. Epub 2013 Apr 12.

PMID:
23463519
17.

A microfluidic approach towards hybridoma generation for cancer immunotherapy.

Lu YT, Pendharkar GP, Lu CH, Chang CM, Liu CH.

Oncotarget. 2015 Nov 17;6(36):38764-76. doi: 10.18632/oncotarget.5550.

18.

Optimization of bulk cell electrofusion in vitro for production of human-mouse heterohybridoma cells.

Trontelj K, Rebersek M, Kanduser M, Serbec VC, Sprohar M, Miklavcic D.

Bioelectrochemistry. 2008 Nov;74(1):124-9. doi: 10.1016/j.bioelechem.2008.06.003. Epub 2008 Jun 11.

PMID:
18667367
19.

Equipment for the large-scale electromanipulation of plant protoplasts.

Jones B, Lynch PT, Handley GJ, Malaure RS, Blackhall NW, Hammatt N, Power JB, Cocking EC, Davey MR.

Biotechniques. 1994 Feb;16(2):312-21.

PMID:
8179895
20.

Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip.

Wiklund M, Günther C, Lemor R, Jäger M, Fuhr G, Hertz HM.

Lab Chip. 2006 Dec;6(12):1537-44. Epub 2006 Sep 11.

PMID:
17203158

Supplemental Content

Support Center