Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

In situ force mapping of mammary gland transformation.

Lopez JI, Kang I, You WK, McDonald DM, Weaver VM.

Integr Biol (Camb). 2011 Sep;3(9):910-21. doi: 10.1039/c1ib00043h. Epub 2011 Aug 15.

2.

Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.

Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM.

Integr Biol (Camb). 2015 Oct;7(10):1120-34. doi: 10.1039/c5ib00040h. Epub 2015 May 11.

3.

Pleiotropic functions of the tumor- and metastasis-suppressing matrix metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice.

Decock J, Hendrickx W, Thirkettle S, Gutiérrez-Fernández A, Robinson SD, Edwards DR.

Breast Cancer Res. 2015 Mar 14;17:38. doi: 10.1186/s13058-015-0545-8.

4.

The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells.

Booth BW, Boulanger CA, Anderson LH, Smith GH.

Oncogene. 2011 Feb 10;30(6):679-89. doi: 10.1038/onc.2010.439. Epub 2010 Oct 4.

6.

Hormonal induction of mammary tumor viruses and its implications for carcinogenesis.

McGrath CM, Jones RF.

Cancer Res. 1978 Nov;38(11 Pt 2):4112-25. Review.

7.

Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion.

Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP.

J Biol Chem. 2004 Dec 3;279(49):51630-46. Epub 2004 Sep 7.

8.

Alteration of sodium transport in mouse mammary epithelium associated with neoplastic transformation.

Shen SS, Hamamoto ST, Bern HA, Steinhardt RA.

Cancer Res. 1978 May;38(5):1356-61.

9.

Transgenic mice reveal roles for TGFalpha and EGF receptor in mammary gland development and neoplasia.

Schroeder JA, Lee DC.

J Mammary Gland Biol Neoplasia. 1997 Apr;2(2):119-29. Review.

PMID:
10882298
10.

Vitamin D receptor status alters mammary gland morphology and tumorigenesis in MMTV-neu mice.

Zinser GM, Welsh J.

Carcinogenesis. 2004 Dec;25(12):2361-72. Epub 2004 Aug 27.

PMID:
15333467
11.
12.

Synergistic interaction of transforming growth factor alpha and c-myc in mouse mammary and salivary gland tumorigenesis.

Amundadottir LT, Johnson MD, Merlino G, Smith GH, Dickson RB.

Cell Growth Differ. 1995 Jun;6(6):737-48.

13.

Collagen reorganization at the tumor-stromal interface facilitates local invasion.

Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ.

BMC Med. 2006 Dec 26;4(1):38.

14.

Longterm effects of neonatal anterior hypophysial isografts on the mammary gland of mammary tumor virus-expressed mice.

Mori T, Bern HA.

Proc Soc Exp Biol Med. 1979 May;161(1):48-52. No abstract available.

PMID:
220619
15.

Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis.

Kass L, Erler JT, Dembo M, Weaver VM.

Int J Biochem Cell Biol. 2007;39(11):1987-94. Epub 2007 Jul 19. Review.

16.

CD24 Is Not Required for Tumor Initiation and Growth in Murine Breast and Prostate Cancer Models.

Cremers N, Neeb A, Uhle T, Dimmler A, Rothley M, Allgayer H, Fodde R, Sleeman JP, Thiele W.

PLoS One. 2016 Mar 15;11(3):e0151468. doi: 10.1371/journal.pone.0151468. eCollection 2016.

18.

Mouse mammary tumor virus and mammary tumorigenesis in wild mice.

Imai S.

Pathol Int. 1996 Dec;46(12):919-32. Review.

PMID:
9110343
19.

Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene.

Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P.

Cell. 1988 Jul 1;54(1):105-15.

PMID:
2898299
20.

B and T cells are required for mouse mammary tumor virus spread within the mammary gland.

Golovkina TV, Dudley JP, Ross SR.

J Immunol. 1998 Sep 1;161(5):2375-82.

Supplemental Content

Support Center