Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Light and melatonin schedule neuronal differentiation in the habenular nuclei.

de Borsetti NH, Dean BJ, Bain EJ, Clanton JA, Taylor RW, Gamse JT.

Dev Biol. 2011 Oct 1;358(1):251-61. doi: 10.1016/j.ydbio.2011.07.038. Epub 2011 Aug 5.

2.

Subnuclear development of the zebrafish habenular nuclei requires ER translocon function.

Doll CA, Burkart JT, Hope KD, Halpern ME, Gamse JT.

Dev Biol. 2011 Dec 1;360(1):44-57. doi: 10.1016/j.ydbio.2011.09.003. Epub 2011 Sep 16.

3.

Development of a circadian melatonin rhythm in embryonic zebrafish.

Kazimi N, Cahill GM.

Brain Res Dev Brain Res. 1999 Oct 20;117(1):47-52.

PMID:
10536231
4.

The ventral habenulae of zebrafish develop in prosomere 2 dependent on Tcf7l2 function.

Beretta CA, Dross N, Bankhead P, Carl M.

Neural Dev. 2013 Sep 25;8:19. doi: 10.1186/1749-8104-8-19.

5.
6.

Melatonin modulates cell survival of new neurons in the hippocampus of adult mice.

Ramírez-Rodríguez G, Klempin F, Babu H, Benítez-King G, Kempermann G.

Neuropsychopharmacology. 2009 Aug;34(9):2180-91. doi: 10.1038/npp.2009.46. Epub 2009 May 6.

7.

Tcf7l2 is required for left-right asymmetric differentiation of habenular neurons.

Hüsken U, Stickney HL, Gestri G, Bianco IH, Faro A, Young RM, Roussigne M, Hawkins TA, Beretta CA, Brinkmann I, Paolini A, Jacinto R, Albadri S, Dreosti E, Tsalavouta M, Schwarz Q, Cavodeassi F, Barth AK, Wen L, Zhang B, Blader P, Yaksi E, Poggi L, Zigman M, Lin S, Wilson SW, Carl M.

Curr Biol. 2014 Oct 6;24(19):2217-27. doi: 10.1016/j.cub.2014.08.006. Epub 2014 Sep 4.

8.

Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target.

Gamse JT, Kuan YS, Macurak M, Brösamle C, Thisse B, Thisse C, Halpern ME.

Development. 2005 Nov;132(21):4869-81. Epub 2005 Oct 5.

9.

Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei.

Roussigné M, Bianco IH, Wilson SW, Blader P.

Development. 2009 May;136(9):1549-57. doi: 10.1242/dev.034793.

10.
11.

Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos.

Green CB, Liang MY, Steenhard BM, Besharse JC.

Brain Res Dev Brain Res. 1999 Oct 20;117(1):109-16.

PMID:
10536238
12.

Pineal oscillator functioning in the chicken--effect of photoperiod and melatonin.

Turkowska E, Majewski PM, Rai S, Skwarlo-Sonta K.

Chronobiol Int. 2014 Feb;31(1):134-43. doi: 10.3109/07420528.2013.832279. Epub 2013 Oct 17.

PMID:
24134119
13.
14.

The epithalamus of the developing and adult frog: calretinin expression and habenular asymmetry in Rana esculenta.

Guglielmotti V, Cristino L, Sada E, Bentivoglio M.

Brain Res. 2004 Feb 27;999(1):9-19.

PMID:
14746917
16.

Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula.

Evely KM, Hudson RL, Dubocovich ML, Haj-Dahmane S.

Synapse. 2016 May;70(5):181-6. doi: 10.1002/syn.21892. Epub 2016 Feb 22.

PMID:
26799638
17.

Neuropilin asymmetry mediates a left-right difference in habenular connectivity.

Kuan YS, Yu HH, Moens CB, Halpern ME.

Development. 2007 Mar;134(5):857-65. Epub 2007 Jan 24.

18.

Changes in melatonin binding sites under artificial light-dark, constant light and constant dark conditions in the masu salmon brain.

Amano M, Iigo M, Kitamura S, Amiya N, Yamamori K.

Comp Biochem Physiol A Mol Integr Physiol. 2006 Aug;144(4):509-13. Epub 2006 Apr 28.

PMID:
16759892
19.

Ontogeny of melatonin, Per2 and E4bp4 light responsiveness in the chicken embryonic pineal gland.

Herichová I, Monosíková J, Zeman M.

Comp Biochem Physiol A Mol Integr Physiol. 2008 Jan;149(1):44-50. Epub 2007 Oct 11.

PMID:
17996471
20.

Dbx1b defines the dorsal habenular progenitor domain in the zebrafish epithalamus.

Dean BJ, Erdogan B, Gamse JT, Wu SY.

Neural Dev. 2014 Sep 12;9:20. doi: 10.1186/1749-8104-9-20.

Supplemental Content

Support Center