Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 71

1.

Size and shape effects on creep and diffusion at the nanoscale.

Guisbiers G, Buchaillot L.

Nanotechnology. 2008 Oct 29;19(43):435701. doi: 10.1088/0957-4484/19/43/435701. Epub 2008 Sep 22.

PMID:
21832705
2.

Fabrication and characterization of graphitic carbon nanostructures with controllable size, shape, and position.

Du R, Ssenyange S, Aktary M, McDermott MT.

Small. 2009 May;5(10):1162-8. doi: 10.1002/smll.200801357.

PMID:
19235195
3.

Study of creep behavior of ultra-high-molecular-weight polyethylene systems.

Deng M, Latour RA, Ogale AA, Shalaby SW.

J Biomed Mater Res. 1998 May;40(2):214-23.

PMID:
9549616
4.

Diffusion creep in perovskite: implications for the rheology of the lower mantle.

Karato S, Li P.

Science. 1992 Mar 6;255(5049):1238-40.

PMID:
17816832
5.

Dynamic creep and mechanical characteristics of SmartSet GHV bone cement.

Liu CZ, Green SM, Watkins ND, Baker D, McCaskie AW.

J Mater Sci Mater Med. 2005 Feb;16(2):153-60.

PMID:
15744604
6.

Creep behavior of bagasse fiber reinforced polymer composites.

Xu Y, Wu Q, Lei Y, Yao F.

Bioresour Technol. 2010 May;101(9):3280-6. doi: 10.1016/j.biortech.2009.12.072. Epub 2010 Jan 12.

PMID:
20064712
7.

Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

Jain PK, Huang X, El-Sayed IH, El-Sayed MA.

Acc Chem Res. 2008 Dec;41(12):1578-86. doi: 10.1021/ar7002804.

PMID:
18447366
8.

Molecular mobility under nanometer scale confinement.

Kim TS, Dauskardt RH.

Nano Lett. 2010 May 12;10(5):1955-9. doi: 10.1021/nl101169s.

PMID:
20392106
9.

Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature.

González E, Arbiol J, Puntes VF.

Science. 2011 Dec 9;334(6061):1377-80. doi: 10.1126/science.1212822.

10.

Polymerization kinetics, glass transition temperature and creep of acrylic bone cements.

Migliaresi C, Fambri L, Kolarik J.

Biomaterials. 1994 Sep;15(11):875-81.

PMID:
7833433
11.
12.

Control of epoxy creep using graphene.

Zandiatashbar A, Picu CR, Koratkar N.

Small. 2012 Jun 11;8(11):1676-82. doi: 10.1002/smll.201102686. Epub 2012 Feb 29.

PMID:
22378720
13.
14.

Flux dependent MeV self-ion-induced effects on Au nanostructures: dramatic mass transport and nanosilicide formation.

Ghatak J, Umananda Bhatta M, Sundaravel B, Nair KG, Liou SC, Chen CH, Wang YL, Satyam PV.

Nanotechnology. 2008 Aug 13;19(32):325602. doi: 10.1088/0957-4484/19/32/325602. Epub 2008 Jul 2.

PMID:
21828815
15.

Microcracking mechanism in a SiCf-SiBC composite creep-tested in argon.

Darzens S, Chermant JL, Vicens J.

J Microsc. 2001 Feb;201(2):230-237.

17.

The effects of polymeric nanostructure shape on drug delivery.

Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PL, Hammond PT, Yang YY.

Adv Drug Deliv Rev. 2011 Nov;63(14-15):1228-46. doi: 10.1016/j.addr.2011.06.016. Epub 2011 Jul 6. Review.

PMID:
21777633
18.

Intermittent suckling: effects on piglet and sow performance before and after weaning.

Kuller WI, Soede NM, van Beers-Schreurs HM, Langendijk P, Taverne MA, Verheijden JH, Kemp B.

J Anim Sci. 2004 Feb;82(2):405-13.

19.

Extended creep behavior of dental composites using time-temperature superposition principle.

Vaidyanathan TK, Vaidyanathan J, Cherian Z.

Dent Mater. 2003 Jan;19(1):46-53.

PMID:
12498896
20.

Controlling diffusion of lithium in silicon nanostructures.

Chan TL, Chelikowsky JR.

Nano Lett. 2010 Mar 10;10(3):821-5. doi: 10.1021/nl903183n.

PMID:
20121259

Supplemental Content

Support Center