Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 277

1.

A theoretical study of exciton energy levels in laterally coupled quantum dots.

Barticevic Z, Pacheco M, Duque CA, Oliveira LE.

J Phys Condens Matter. 2009 Oct 7;21(40):405801. doi: 10.1088/0953-8984/21/40/405801. Epub 2009 Sep 14.

PMID:
21832423
2.

Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots.

Duque CA, Porras-Montenegro N, Barticevic Z, Pacheco M, Oliveira LE.

J Phys Condens Matter. 2006 Feb 15;18(6):1877-84. doi: 10.1088/0953-8984/18/6/005. Epub 2006 Jan 24.

PMID:
21697562
3.

Numerical simulation of electronic properties of coupled quantum dots on wetting layers.

Betcke MM, Voss H.

Nanotechnology. 2008 Apr 23;19(16):165204. doi: 10.1088/0957-4484/19/16/165204. Epub 2008 Mar 18.

PMID:
21825638
4.

Effects of applied electric and magnetic fields on a donor impurity in laterally coupled quantum dots.

Ulloa P, Pacheco M, Barticevic Z, Oliveira LE.

J Phys Condens Matter. 2011 Aug 17;23(32):325301. doi: 10.1088/0953-8984/23/32/325301. Epub 2011 Jul 28.

PMID:
21795781
5.
6.

The application of hartree approximation in exciton recombination energy for conical InAs/GaAs quantum dots.

Yao W, Yu Z, Liu Y, Jia B.

J Nanosci Nanotechnol. 2010 Nov;10(11):7612-5.

PMID:
21137994
7.

Exciton Dipole-Dipole Interaction in a Single Coupled-Quantum-Dot Structure via Polarized Excitation.

Kim H, Kim I, Kyhm K, Taylor RA, Kim JS, Song JD, Je KC, Dang LS.

Nano Lett. 2016 Dec 14;16(12):7755-7760. Epub 2016 Nov 11.

PMID:
27960477
8.

Quantum nature of a strongly coupled single quantum dot-cavity system.

Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu EL, Imamoğlu A.

Nature. 2007 Feb 22;445(7130):896-9. Epub 2007 Jan 28.

PMID:
17259971
9.

Transport through graphene quantum dots.

Güttinger J, Molitor F, Stampfer C, Schnez S, Jacobsen A, Dröscher S, Ihn T, Ensslin K.

Rep Prog Phys. 2012 Dec;75(12):126502. doi: 10.1088/0034-4885/75/12/126502. Epub 2012 Nov 9.

PMID:
23144122
10.

Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.

Zieliński M.

J Phys Condens Matter. 2013 Nov 20;25(46):465301. doi: 10.1088/0953-8984/25/46/465301. Epub 2013 Oct 15.

PMID:
24129261
11.

Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules.

Koole R, Liljeroth P, de Mello Donega C, Vanmaekelbergh D, Meijerink A.

J Am Chem Soc. 2006 Aug 16;128(32):10436-41. Erratum in: J Am Chem Soc. 2007 Aug 29;129(34):10613.

PMID:
16895408
12.

Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures.

Fillipov S, Puttisong Y, Huang Y, Buyanova IA, Suraprapapich S, Tu CW, Chen WM.

ACS Nano. 2015 Jun 23;9(6):5741-9. doi: 10.1021/acsnano.5b01387. Epub 2015 May 15.

13.

Spatial carrier distribution in InP/GaAs type II quantum dots and quantum posts.

Iikawa F, Donchev V, Ivanov Ts, Dias GO, Tizei LH, Lang R, Heredia E, Gomes PF, Brasil MJ, Cotta MA, Ugarte D, Martinez Pastor JP, de Lima MM Jr, Cantarero A.

Nanotechnology. 2011 Feb 11;22(6):065703. doi: 10.1088/0957-4484/22/6/065703. Epub 2011 Jan 7.

PMID:
21212489
14.

Charge transfer magnetoexciton formation at vertically coupled quantum dots.

Gutiérrez W, Marin JH, Mikhailov ID.

Nanoscale Res Lett. 2012 Oct 23;7(1):585. doi: 10.1186/1556-276X-7-585.

15.

Local field-induced optical properties of Ag-coated CdS quantum dots.

Je KC, Ju H, Treguer M, Cardinal T, Park SH.

Opt Express. 2006 Aug 21;14(17):7994-8000.

PMID:
19529169
16.

Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

Hatef A, Sadeghi SM, Fortin-Deschênes S, Boulais E, Meunier M.

Opt Express. 2013 Mar 11;21(5):5643-53. doi: 10.1364/OE.21.005643.

PMID:
23482138
17.

Coherent optical spectroscopy of a strongly driven quantum dot.

Xu X, Sun B, Berman PR, Steel DG, Bracker AS, Gammon D, Sham LJ.

Science. 2007 Aug 17;317(5840):929-32.

18.

Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.

Usman M, Tan YH, Ryu H, Ahmed SS, Krenner HJ, Boykin TB, Klimeck G.

Nanotechnology. 2011 Aug 5;22(31):315709. doi: 10.1088/0957-4484/22/31/315709. Epub 2011 Jul 8.

PMID:
21737873
19.
20.

Hybridization of electronic states in quantum dots through photon emission.

Karrai K, Warburton RJ, Schulhauser C, Högele A, Urbaszek B, McGhee EJ, Govorov AO, Garcia JM, Gerardot BD, Petroff PM.

Nature. 2004 Jan 8;427(6970):135-8.

PMID:
14712271

Supplemental Content

Support Center