Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.

Targeted polymerase chain reaction-based enrichment and next generation sequencing for diagnostic testing of congenital disorders of glycosylation.

Jones MA, Bhide S, Chin E, Ng BG, Rhodenizer D, Zhang VW, Sun JJ, Tanner A, Freeze HH, Hegde MR.

Genet Med. 2011 Nov;13(11):921-32. doi: 10.1097/GIM.0b013e318226fbf2.

2.

Molecular diagnostic testing for congenital disorders of glycosylation (CDG): detection rate for single gene testing and next generation sequencing panel testing.

Jones MA, Rhodenizer D, da Silva C, Huff IJ, Keong L, Bean LJ, Coffee B, Collins C, Tanner AK, He M, Hegde MR.

Mol Genet Metab. 2013 Sep-Oct;110(1-2):78-85. doi: 10.1016/j.ymgme.2013.05.012. Epub 2013 May 28.

PMID:
23806237
3.

Comprehensive mutation analysis for congenital muscular dystrophy: a clinical PCR-based enrichment and next-generation sequencing panel.

Valencia CA, Ankala A, Rhodenizer D, Bhide S, Littlejohn MR, Keong LM, Rutkowski A, Sparks S, Bonnemann C, Hegde M.

PLoS One. 2013;8(1):e53083. doi: 10.1371/journal.pone.0053083. Epub 2013 Jan 11.

4.

Assessment of target enrichment platforms using massively parallel sequencing for the mutation detection for congenital muscular dystrophy.

Valencia CA, Rhodenizer D, Bhide S, Chin E, Littlejohn MR, Keong LM, Rutkowski A, Bonnemann C, Hegde M.

J Mol Diagn. 2012 May-Jun;14(3):233-46. doi: 10.1016/j.jmoldx.2012.01.009. Epub 2012 Mar 16.

5.

Understanding human glycosylation disorders: biochemistry leads the charge.

Freeze HH.

J Biol Chem. 2013 Mar 8;288(10):6936-45. doi: 10.1074/jbc.R112.429274. Epub 2013 Jan 17. Review.

6.
7.

High-throughput mutation analysis in patients with a nephronophthisis-associated ciliopathy applying multiplexed barcoded array-based PCR amplification and next-generation sequencing.

Halbritter J, Diaz K, Chaki M, Porath JD, Tarrier B, Fu C, Innis JL, Allen SJ, Lyons RH, Stefanidis CJ, Omran H, Soliman NA, Otto EA.

J Med Genet. 2012 Dec;49(12):756-67. doi: 10.1136/jmedgenet-2012-100973.

PMID:
23188109
8.

Performance evaluation of the next-generation sequencing approach for molecular diagnosis of hereditary hearing loss.

Sivakumaran TA, Husami A, Kissell D, Zhang W, Keddache M, Black AP, Tinkle BT, Greinwald JH Jr, Zhang K.

Otolaryngol Head Neck Surg. 2013 Jun;148(6):1007-16. doi: 10.1177/0194599813482294. Epub 2013 Mar 22.

PMID:
23525850
9.

Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics.

Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, Rahimi H, Reddy NG, Barkoh BA, Mishra BM, Paladugu AV, Manekia JH, Kalhor N, Chowdhuri SR, Staerkel GA, Medeiros LJ, Luthra R, Patel KP.

Mod Pathol. 2014 Feb;27(2):314-27. doi: 10.1038/modpathol.2013.122. Epub 2013 Aug 2.

10.

Expanding the Molecular and Clinical Phenotype of SSR4-CDG.

Ng BG, Raymond K, Kircher M, Buckingham KJ, Wood T, Shendure J, Nickerson DA, Bamshad MJ; University of Washington Center for Mendelian Genomics., Wong JT, Monteiro FP, Graham BH, Jackson S, Sparkes R, Scheuerle AE, Cathey S, Kok F, Gibson JB, Freeze HH.

Hum Mutat. 2015 Nov;36(11):1048-51. doi: 10.1002/humu.22856. Epub 2015 Aug 27.

11.

Application of whole exome sequencing to a rare inherited metabolic disease with neurological and gastrointestinal manifestations: a congenital disorder of glycosylation mimicking glycogen storage disease.

Choi R, Woo HI, Choe BH, Park S, Yoon Y, Ki CS, Lee SY, Kim JW, Song J, Kim DS, Kwon S, Park HD.

Clin Chim Acta. 2015 Apr 15;444:50-3. doi: 10.1016/j.cca.2015.02.008. Epub 2015 Feb 11.

PMID:
25681648
12.

Identification of sequence variants in genetic disease-causing genes using targeted next-generation sequencing.

Wei X, Ju X, Yi X, Zhu Q, Qu N, Liu T, Chen Y, Jiang H, Yang G, Zhen R, Lan Z, Qi M, Wang J, Yang Y, Chu Y, Li X, Guang Y, Huang J.

PLoS One. 2011;6(12):e29500. doi: 10.1371/journal.pone.0029500. Epub 2011 Dec 21.

13.

Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model.

Németh AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD, Shanks ME, Gregory L, Buck D, Zameel Cader M, Talbot K, de Silva R, Fletcher N, Hastings R, Jayawant S, Morrison PJ, Worth P, Taylor M, Tolmie J, O'Regan M; UK Ataxia Consortium., Valentine R, Packham E, Evans J, Seller A, Ragoussis J.

Brain. 2013 Oct;136(Pt 10):3106-18. doi: 10.1093/brain/awt236. Epub 2013 Sep 11.

14.

Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies.

Nijman IJ, van Montfrans JM, Hoogstraat M, Boes ML, van de Corput L, Renner ED, van Zon P, van Lieshout S, Elferink MG, van der Burg M, Vermont CL, van der Zwaag B, Janson E, Cuppen E, Ploos van Amstel JK, van Gijn ME.

J Allergy Clin Immunol. 2014 Feb;133(2):529-34. doi: 10.1016/j.jaci.2013.08.032. Epub 2013 Oct 15. Erratum in: J Allergy Clin Immunol. 2014 Apr;133(4):1232.

PMID:
24139496
15.

Validation of a next-generation-sequencing cancer panel for use in the clinical laboratory.

Simen BB, Yin L, Goswami CP, Davis KO, Bajaj R, Gong JZ, Peiper SC, Johnson ES, Wang ZX.

Arch Pathol Lab Med. 2015 Apr;139(4):508-17. doi: 10.5858/arpa.2013-0710-OA. Epub 2014 Oct 30.

PMID:
25356985
16.

Clinical validation of targeted next-generation sequencing for inherited disorders.

Yohe S, Hauge A, Bunjer K, Kemmer T, Bower M, Schomaker M, Onsongo G, Wilson J, Erdmann J, Zhou Y, Deshpande A, Spears MD, Beckman K, Silverstein KA, Thyagarajan B.

Arch Pathol Lab Med. 2015 Feb;139(2):204-10. doi: 10.5858/arpa.2013-0625-OA.

PMID:
25611102
17.

DDOST mutations identified by whole-exome sequencing are implicated in congenital disorders of glycosylation.

Jones MA, Ng BG, Bhide S, Chin E, Rhodenizer D, He P, Losfeld ME, He M, Raymond K, Berry G, Freeze HH, Hegde MR.

Am J Hum Genet. 2012 Feb 10;90(2):363-8. doi: 10.1016/j.ajhg.2011.12.024. Epub 2012 Feb 2.

18.

Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency.

Van Scherpenzeel M, Timal S, Rymen D, Hoischen A, Wuhrer M, Hipgrave-Ederveen A, Grunewald S, Peanne R, Saada A, Edvardson S, Grønborg S, Ruijter G, Kattentidt-Mouravieva A, Brum JM, Freckmann ML, Tomkins S, Jalan A, Prochazkova D, Ondruskova N, Hansikova H, Willemsen MA, Hensbergen PJ, Matthijs G, Wevers RA, Veltman JA, Morava E, Lefeber DJ.

Brain. 2014 Apr;137(Pt 4):1030-8. doi: 10.1093/brain/awu019. Epub 2014 Feb 24.

PMID:
24566669
19.

Transferrin variants: pitfalls in the diagnostics of Congenital disorders of glycosylation.

Zühlsdorf A, Park JH, Wada Y, Rust S, Reunert J, DuChesne I, Grüneberg M, Marquardt T.

Clin Biochem. 2015 Jan;48(1-2):11-3. doi: 10.1016/j.clinbiochem.2014.09.022. Epub 2014 Oct 8.

PMID:
25305627
20.

Mutations in COG2 encoding a subunit of the conserved oligomeric golgi complex cause a congenital disorder of glycosylation.

Kodera H, Ando N, Yuasa I, Wada Y, Tsurusaki Y, Nakashima M, Miyake N, Saitoh S, Matsumoto N, Saitsu H.

Clin Genet. 2015 May;87(5):455-60. doi: 10.1111/cge.12417. Epub 2014 May 24.

PMID:
24784932

Supplemental Content

Support Center