Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 198

1.

In vivo characterization of changing blood-tumor barrier permeability in a mouse model of breast cancer metastasis: a complementary magnetic resonance imaging approach.

Percy DB, Ribot EJ, Chen Y, McFadden C, Simedrea C, Steeg PS, Chambers AF, Foster PJ.

Invest Radiol. 2011 Nov;46(11):718-25. doi: 10.1097/RLI.0b013e318226c427.

PMID:
21788908
2.

Real-time monitoring of gadolinium diethylenetriamine penta-acetic acid during osmotic blood-brain barrier disruption using magnetic resonance imaging in normal wistar rats.

Blanchette M, Pellerin M, Tremblay L, Lepage M, Fortin D.

Neurosurgery. 2009 Aug;65(2):344-50; discussion 350-1. doi: 10.1227/01.NEU.0000349762.17256.9E.

PMID:
19625914
3.

In-vivo longitudinal MRI study: an assessment of melanoma brain metastases in a clinically relevant mouse model.

Henry MN, Chen Y, McFadden CD, Simedrea FC, Foster PJ.

Melanoma Res. 2015 Apr;25(2):127-37. doi: 10.1097/CMR.0000000000000136.

PMID:
25513779
4.

MRI measurement of blood-brain barrier permeability following spontaneous reperfusion in the starch microsphere model of ischemia.

Harris NG, Gauden V, Fraser PA, Williams SR, Parker GJ.

Magn Reson Imaging. 2002 Apr;20(3):221-30.

PMID:
12117604
5.

Dyke Award Paper. Kinetics of pathologic blood-brain-barrier permeability in an astrocytic glioma using contrast-enhanced MR.

Schmiedl UP, Kenney J, Maravilla KR.

AJNR Am J Neuroradiol. 1992 Jan-Feb;13(1):5-14.

PMID:
1595491
6.

Quantitative evaluation of blood-cerebrospinal fluid barrier permeability in the rat with experimental meningitis using magnetic resonance imaging.

Ichikawa H, Ishikawa M, Fukunaga M, Ishikawa K, Ishiyama H.

Brain Res. 2010 Mar 19;1321:125-32. doi: 10.1016/j.brainres.2010.01.050. Epub 2010 Jan 28.

PMID:
20114032
7.

Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors.

Sarin H, Kanevsky AS, Wu H, Sousa AA, Wilson CM, Aronova MA, Griffiths GL, Leapman RD, Vo HQ.

J Transl Med. 2009 Jun 23;7:51. doi: 10.1186/1479-5876-7-51.

8.

MR T1-weighted inversion recovery imaging in detecting brain metastases: could it replace T1-weighted spin-echo imaging?

Qian YF, Yu CL, Zhang C, Yu YQ.

AJNR Am J Neuroradiol. 2008 Apr;29(4):701-4. doi: 10.3174/ajnr.A0907. Epub 2008 Jan 9.

9.

Serial MR imaging of intracranial metastases after radiosurgery.

Hawighorst H, Essig M, Debus J, Knopp MV, Engenhart-Cabilic R, Schönberg SO, Brix G, Zuna I, van Kaick G.

Magn Reson Imaging. 1997;15(10):1121-32.

PMID:
9408133
10.

Effects of Gd-DTPA after osmotic BBB disruption in a rodent model: toxicity and MR findings.

Roman-Goldstein SM, Barnett PA, McCormick CI, Szumowski J, Shannon EM, Ramsey FL, Mass M, Neuwelt EA.

J Comput Assist Tomogr. 1994 Sep-Oct;18(5):731-6.

PMID:
8089321
11.

Reversals of blood-brain barrier disruption by catalase: a serial magnetic resonance imaging study of experimental optic neuritis.

Guy J, McGorray S, Fitzsimmons J, Beck B, Mancuso A, Rao NA, Hamed L.

Invest Ophthalmol Vis Sci. 1994 Aug;35(9):3456-65.

PMID:
8056521
12.

Magnetic resonance imaging of brain metastases: magnetisation transfer or triple dose gadolinium?

Thng CH, Tay KH, Chan LL, Lim EH, Khoo BK, Huin EL, Tan KP.

Ann Acad Med Singapore. 1999 Jul;28(4):529-33.

PMID:
10561767
13.

Low-dose contrast-enhanced magnetic resonance imaging of brain metastases at 3.0 T using high-relaxivity contrast agents.

Huang B, Liang CH, Liu HJ, Wang GY, Zhang SX.

Acta Radiol. 2010 Feb;51(1):78-84. doi: 10.3109/02841850903350178.

PMID:
19912078
14.

Intraindividual in vivo comparison of gadolinium contrast agents for pharmacokinetic analysis using dynamic contrast enhanced magnetic resonance imaging.

Liang J, Sammet S, Yang X, Jia G, Takayama Y, Knopp MV.

Invest Radiol. 2010 May;45(5):233-44. doi: 10.1097/RLI.0b013e3181d54507.

PMID:
20351653
15.

Contrast-enhanced MR imaging of metastatic brain tumor at 3 tesla: utility of T(1)-weighted SPACE compared with 2D spin echo and 3D gradient echo sequence.

Komada T, Naganawa S, Ogawa H, Matsushima M, Kubota S, Kawai H, Fukatsu H, Ikeda M, Kawamura M, Sakurai Y, Maruyama K.

Magn Reson Med Sci. 2008;7(1):13-21.

16.

Gadolinium-enhanced three-dimensional magnetization-prepared rapid gradient-echo (3D MP-RAGE) imaging is superior to spin-echo imaging in delineating brain metastases.

Takeda T, Takeda A, Nagaoka T, Kunieda E, Takemasa K, Watanabe M, Hatou T, Oguro S, Katayama M.

Acta Radiol. 2008 Dec;49(10):1167-73. doi: 10.1080/02841850802477924.

PMID:
18979271
17.

Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice.

Klohs J, Steinbrink J, Bourayou R, Mueller S, Cordell R, Licha K, Schirner M, Dirnagl U, Lindauer U, Wunder A.

J Neurosci Methods. 2009 May 30;180(1):126-32. doi: 10.1016/j.jneumeth.2009.03.002. Epub 2009 Mar 20.

PMID:
19427539
18.
19.

Dynamic contrast-enhanced magnetic resonance imaging of canine brain tumors.

Zhao Q, Lee S, Kent M, Schatzberg S, Platt S.

Vet Radiol Ultrasound. 2010 Mar-Apr;51(2):122-9.

PMID:
20402394
20.

Reduced blood brain barrier breakdown in P-selectin deficient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke.

Jin AY, Tuor UI, Rushforth D, Kaur J, Muller RN, Petterson JL, Boutry S, Barber PA.

BMC Neurosci. 2010 Feb 2;11:12. doi: 10.1186/1471-2202-11-12.

Supplemental Content

Support Center