Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 537

1.

Active and total microbial communities in forest soil are largely different and highly stratified during decomposition.

Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V, Větrovský T, Zifčáková L, Snajdr J, Rídl J, Vlček C, Voříšková J.

ISME J. 2012 Feb;6(2):248-58. doi: 10.1038/ismej.2011.95. Epub 2011 Jul 21.

2.

Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers.

Stursová M, Zifčáková L, Leigh MB, Burgess R, Baldrian P.

FEMS Microbiol Ecol. 2012 Jun;80(3):735-46. doi: 10.1111/j.1574-6941.2012.01343.x. Epub 2012 Mar 27.

3.

Fungal community on decomposing leaf litter undergoes rapid successional changes.

Voříšková J, Baldrian P.

ISME J. 2013 Mar;7(3):477-86. doi: 10.1038/ismej.2012.116. Epub 2012 Oct 11.

4.

Microbial diversity during cellulose decomposition in different forest stands: I. microbial communities and environmental conditions.

Kubartová A, Moukoumi J, Béguiristain T, Ranger J, Berthelin J.

Microb Ecol. 2007 Oct;54(3):393-405. Epub 2007 Jul 4.

PMID:
17609845
5.

Soil microbial communities associated with Douglas-fir and red alder stands at high- and low-productivity forest sites in Oregon, USA.

Yarwood SA, Bottomley PJ, Myrold DD.

Microb Ecol. 2010 Oct;60(3):606-17. doi: 10.1007/s00248-010-9675-9. Epub 2010 May 7.

PMID:
20449582
6.

Microbial colonization of beech and spruce litter--influence of decomposition site and plant litter species on the diversity of microbial community.

Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M.

Microb Ecol. 2006 Jul;52(1):127-35. Epub 2006 May 12.

PMID:
16691328
7.

Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation.

McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL.

Microb Ecol. 2012 May;63(4):804-12. doi: 10.1007/s00248-011-9973-x. Epub 2011 Nov 12.

PMID:
22080256
8.

Responses of soil cellulolytic fungal communities to elevated atmospheric CO₂ are complex and variable across five ecosystems.

Weber CF, Zak DR, Hungate BA, Jackson RB, Vilgalys R, Evans RD, Schadt CW, Megonigal JP, Kuske CR.

Environ Microbiol. 2011 Oct;13(10):2778-93. doi: 10.1111/j.1462-2920.2011.02548.x. Epub 2011 Sep 1.

9.

Contrasting soil fungal community responses to experimental nitrogen addition using the large subunit rRNA taxonomic marker and cellobiohydrolase I functional marker.

Mueller RC, Balasch MM, Kuske CR.

Mol Ecol. 2014 Sep;23(17):4406-17. doi: 10.1111/mec.12858. Epub 2014 Aug 7.

PMID:
25039479
10.

Seasonal dynamics of fungal communities in a temperate oak forest soil.

Voříšková J, Brabcová V, Cajthaml T, Baldrian P.

New Phytol. 2014 Jan;201(1):269-78. doi: 10.1111/nph.12481. Epub 2013 Sep 6.

11.

Microbial community structure and density under different tree species in an acid forest soil (Morvan, France).

Lejon DP, Chaussod R, Ranger J, Ranjard L.

Microb Ecol. 2005 Nov;50(4):614-25. Epub 2005 Dec 13.

PMID:
16333717
12.

Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter.

Žifčáková L, Větrovský T, Howe A, Baldrian P.

Environ Microbiol. 2016 Jan;18(1):288-301. doi: 10.1111/1462-2920.13026. Epub 2015 Oct 14.

PMID:
26286355
13.

Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability.

Leckie SE, Prescott CE, Grayston SJ, Neufeld JD, Mohn WW.

Microb Ecol. 2004 Jul;48(1):29-40. Epub 2004 Apr 19.

PMID:
15085299
15.

Change in bacterial community structure in response to disturbance of natural hardwood and secondary coniferous forest soils in central taiwan.

Lin YT, Jangid K, Whitman WB, Coleman DC, Chiu CY.

Microb Ecol. 2011 Feb;61(2):429-37. doi: 10.1007/s00248-010-9748-9. Epub 2010 Sep 29.

PMID:
20878522
16.

Relationship between soil properties and patterns of bacterial beta-diversity across reclaimed and natural boreal forest soils.

Dimitriu PA, Grayston SJ.

Microb Ecol. 2010 Apr;59(3):563-73. doi: 10.1007/s00248-009-9590-0. Epub 2009 Oct 15.

PMID:
19830478
17.

Distinct microbial communities associated with buried soils in the Siberian tundra.

Gittel A, Bárta J, Kohoutová I, Mikutta R, Owens S, Gilbert J, Schnecker J, Wild B, Hannisdal B, Maerz J, Lashchinskiy N, Capek P, Santrůčková H, Gentsch N, Shibistova O, Guggenberger G, Richter A, Torsvik VL, Schleper C, Urich T.

ISME J. 2014 Apr;8(4):841-53. doi: 10.1038/ismej.2013.219. Epub 2013 Dec 12.

18.

Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest.

McGuire KL, Zak DR, Edwards IP, Blackwood CB, Upchurch R.

Oecologia. 2010 Nov;164(3):785-95. doi: 10.1007/s00442-010-1686-1. Epub 2010 Jun 25.

PMID:
20577764
19.

Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation.

Uroz S, Ioannidis P, Lengelle J, Cébron A, Morin E, Buée M, Martin F.

PLoS One. 2013;8(2):e55929. doi: 10.1371/journal.pone.0055929. Epub 2013 Feb 13.

20.

Soil bacterial and fungal communities across a pH gradient in an arable soil.

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N.

ISME J. 2010 Oct;4(10):1340-51. doi: 10.1038/ismej.2010.58. Epub 2010 May 6.

PMID:
20445636

Supplemental Content

Support Center