Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice.

Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA, Zhang J, Wojnarowicz MW Jr, Natarajan SK, Malinouski M, Schweizer U, Tsuji PA, Carlson BA, Maas RL, Lou MF, Goldstein LE, Hatfield DL, Gladyshev VN.

J Biol Chem. 2011 Sep 23;286(38):33203-12. doi: 10.1074/jbc.M111.259218. Epub 2011 Jul 18.

2.

A novel cysteine-rich domain of Sep15 mediates the interaction with UDP-glucose:glycoprotein glucosyltransferase.

Labunskyy VM, Ferguson AD, Fomenko DE, Chelliah Y, Hatfield DL, Gladyshev VN.

J Biol Chem. 2005 Nov 11;280(45):37839-45. Epub 2005 Aug 29.

3.

Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells.

Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN.

J Biol Chem. 2001 May 4;276(18):15330-6. Epub 2001 Feb 7.

4.

Sep15, a thioredoxin-like selenoprotein, is involved in the unfolded protein response and differentially regulated by adaptive and acute ER stresses.

Labunskyy VM, Yoo MH, Hatfield DL, Gladyshev VN.

Biochemistry. 2009 Sep 8;48(35):8458-65. doi: 10.1021/bi900717p.

5.

NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family.

Ferguson AD, Labunskyy VM, Fomenko DE, AraƧ D, Chelliah Y, Amezcua CA, Rizo J, Gladyshev VN, Deisenhofer J.

J Biol Chem. 2006 Feb 10;281(6):3536-43. Epub 2005 Nov 30.

6.

Selenite and ebselen supplementation attenuates D-galactose-induced oxidative stress and increases expression of SELR and SEP15 in rat lens.

Dai J, Zhou J, Liu H, Huang K.

J Biol Inorg Chem. 2016 Dec;21(8):1037-1046. Epub 2016 Oct 17.

PMID:
27752786
7.

Chicken 15-kDa selenoprotein plays important antioxidative function in splenocytes.

Sun H, Deng T, Fu J.

Biol Trace Elem Res. 2014 Dec;161(3):288-96. doi: 10.1007/s12011-014-0126-1. Epub 2014 Sep 24.

PMID:
25249069
8.

Cell Proliferation and Motility Are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells.

Bang J, Huh JH, Na JW, Lu Q, Carlson BA, Tobe R, Tsuji PA, Gladyshev VN, Hatfield DL, Lee BJ.

Mol Cells. 2015 May;38(5):457-65. doi: 10.14348/molcells.2015.0007. Epub 2015 Feb 27.

9.

Knockdown of 15-kDa selenoprotein (Sep15) increases hLE cells' susceptibility to tunicamycin-induced apoptosis.

Yin N, Zheng X, Zhou J, Liu H, Huang K.

J Biol Inorg Chem. 2015 Dec;20(8):1307-17. doi: 10.1007/s00775-015-1309-8. Epub 2015 Nov 3.

PMID:
26531105
10.

Knockout of the 15 kDa selenoprotein protects against chemically-induced aberrant crypt formation in mice.

Tsuji PA, Carlson BA, Naranjo-Suarez S, Yoo MH, Xu XM, Fomenko DE, Gladyshev VN, Hatfield DL, Davis CD.

PLoS One. 2012;7(12):e50574. doi: 10.1371/journal.pone.0050574. Epub 2012 Dec 4.

11.

Deficiency in the 15-kDa selenoprotein inhibits tumorigenicity and metastasis of colon cancer cells.

Irons R, Tsuji PA, Carlson BA, Ouyang P, Yoo MH, Xu XM, Hatfield DL, Gladyshev VN, Davis CD.

Cancer Prev Res (Phila). 2010 May;3(5):630-9. doi: 10.1158/1940-6207.CAPR-10-0003. Epub 2010 Apr 13.

12.

Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling.

Huang JQ, Ren FZ, Jiang YY, Xiao C, Lei XG.

Free Radic Biol Med. 2015 Jun;83:129-38. doi: 10.1016/j.freeradbiomed.2015.01.033. Epub 2015 Feb 7.

PMID:
25668720
13.

Identification and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family.

Novoselov SV, Hua D, Lobanov AV, Gladyshev VN.

Biochem J. 2006 Mar 15;394(Pt 3):575-9.

14.

Selenoproteins in bladder cancer.

Reszka E.

Clin Chim Acta. 2012 May 18;413(9-10):847-54. doi: 10.1016/j.cca.2012.01.041. Epub 2012 Feb 12. Review.

PMID:
22349600
15.

Selenoprotein-transgenic Chlamydomonas reinhardtii.

Hou Q, Qiu S, Liu Q, Tian J, Hu Z, Ni J.

Nutrients. 2013 Feb 26;5(3):624-36. doi: 10.3390/nu5030624.

16.

The 15kDa selenoprotein and thioredoxin reductase 1 promote colon cancer by different pathways.

Tsuji PA, Carlson BA, Yoo MH, Naranjo-Suarez S, Xu XM, He Y, Asaki E, Seifried HE, Reinhold WC, Davis CD, Gladyshev VN, Hatfield DL.

PLoS One. 2015 Apr 17;10(4):e0124487. doi: 10.1371/journal.pone.0124487. eCollection 2015.

17.

Pro178 and Pro183 of selenoprotein S are essential residues for interaction with p97(VCP) during endoplasmic reticulum-associated degradation.

Lee JH, Kwon JH, Jeon YH, Ko KY, Lee SR, Kim IY.

J Biol Chem. 2014 May 16;289(20):13758-68. doi: 10.1074/jbc.M113.534529. Epub 2014 Apr 3.

18.

Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system.

Steinbrenner H, Sies H.

Arch Biochem Biophys. 2013 Aug 15;536(2):152-7. doi: 10.1016/j.abb.2013.02.021. Epub 2013 Mar 13. Review.

PMID:
23500141
19.

Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern.

Novoselov SV, Kryukov GV, Xu XM, Carlson BA, Hatfield DL, Gladyshev VN.

J Biol Chem. 2007 Apr 20;282(16):11960-8. Epub 2007 Mar 1.

20.

Identification of vimentin as a novel target of HSF4 in lens development and cataract by proteomic analysis.

Mou L, Xu JY, Li W, Lei X, Wu Y, Xu G, Kong X, Xu GT.

Invest Ophthalmol Vis Sci. 2010 Jan;51(1):396-404. doi: 10.1167/iovs.09-3772. Epub 2009 Jul 23.

PMID:
19628735

Supplemental Content

Support Center