Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 129

1.

Remodeling lipid metabolism and improving insulin responsiveness in human primary myotubes.

Sparks LM, Moro C, Ukropcova B, Bajpeyi S, Civitarese AE, Hulver MW, Thoresen GH, Rustan AC, Smith SR.

PLoS One. 2011;6(7):e21068. doi: 10.1371/journal.pone.0021068. Epub 2011 Jul 8.

2.

Increased beta-oxidation in muscle cells enhances insulin-stimulated glucose metabolism and protects against fatty acid-induced insulin resistance despite intramyocellular lipid accumulation.

Perdomo G, Commerford SR, Richard AM, Adams SH, Corkey BE, O'Doherty RM, Brown NF.

J Biol Chem. 2004 Jun 25;279(26):27177-86. Epub 2004 Apr 22.

3.
4.

Abnormal metabolism flexibility in response to high palmitate concentrations in myotubes derived from obese type 2 diabetic patients.

Kitzmann M, Lantier L, Hébrard S, Mercier J, Foretz M, Aguer C.

Biochim Biophys Acta. 2011 Apr;1812(4):423-30. doi: 10.1016/j.bbadis.2010.12.007. Epub 2010 Dec 21.

5.
6.

Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals.

Kase ET, Feng YZ, Badin PM, Bakke SS, Laurens C, Coue M, Langin D, Gaster M, Thoresen GH, Rustan AC, Moro C.

Biochim Biophys Acta. 2015 Sep;1851(9):1194-201. doi: 10.1016/j.bbalip.2015.03.005. Epub 2015 Mar 24.

PMID:
25819461
7.

Reduced incorporation of fatty acids into triacylglycerol in myotubes from obese individuals with type 2 diabetes.

Sparks LM, Bosma M, Brouwers B, van de Weijer T, Bilet L, Schaart G, Moonen-Kornips E, Eichmann TO, Lass A, Hesselink MK, Schrauwen P.

Diabetes. 2014 May;63(5):1583-93. doi: 10.2337/db13-1123. Epub 2014 Jan 31.

8.

Negative regulation of glucose metabolism in human myotubes by supraphysiological doses of 17β-estradiol or testosterone.

Garrido P, Salehzadeh F, Duque-Guimaraes DE, Al-Khalili L.

Metabolism. 2014 Sep;63(9):1178-87. doi: 10.1016/j.metabol.2014.06.003. Epub 2014 Jun 13.

PMID:
25034385
9.

Remodeling of oxidative energy metabolism by galactose improves glucose handling and metabolic switching in human skeletal muscle cells.

Kase ET, Nikolić N, Bakke SS, Bogen KK, Aas V, Thoresen GH, Rustan AC.

PLoS One. 2013;8(4):e59972. doi: 10.1371/journal.pone.0059972. Epub 2013 Apr 1.

10.

Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells.

Aas V, Rokling-Andersen MH, Kase ET, Thoresen GH, Rustan AC.

J Lipid Res. 2006 Feb;47(2):366-74. Epub 2005 Nov 21.

11.

L-Arginine enhances glucose and lipid metabolism in rat L6 myotubes via the NO/ c-GMP pathway.

de Castro Barbosa T, Jiang LQ, Zierath JR, Nunes MT.

Metabolism. 2013 Jan;62(1):79-89. doi: 10.1016/j.metabol.2012.06.011. Epub 2012 Aug 11.

PMID:
22889511
12.

Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism.

Nehlin JO, Just M, Rustan AC, Gaster M.

Biogerontology. 2011 Aug;12(4):349-65. doi: 10.1007/s10522-011-9336-5. Epub 2011 Apr 22.

PMID:
21512720
13.

Perilipin 3 Differentially Regulates Skeletal Muscle Lipid Oxidation in Active, Sedentary, and Type 2 Diabetic Males.

Covington JD, Noland RC, Hebert RC, Masinter BS, Smith SR, Rustan AC, Ravussin E, Bajpeyi S.

J Clin Endocrinol Metab. 2015 Oct;100(10):3683-92. doi: 10.1210/JC.2014-4125. Epub 2015 Jul 14.

14.

Augmenting muscle diacylglycerol and triacylglycerol content by blocking fatty acid oxidation does not impede insulin sensitivity.

Timmers S, Nabben M, Bosma M, van Bree B, Lenaers E, van Beurden D, Schaart G, Westerterp-Plantenga MS, Langhans W, Hesselink MK, Schrauwen-Hinderling VB, Schrauwen P.

Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11711-6. doi: 10.1073/pnas.1206868109. Epub 2012 Jul 2.

15.

Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes.

Aas V, Hessvik NP, Wettergreen M, Hvammen AW, Hallén S, Thoresen GH, Rustan AC.

Biochim Biophys Acta. 2011 Jan;1812(1):94-105. doi: 10.1016/j.bbadis.2010.09.014. Epub 2010 Oct 1.

16.

Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect.

Ortenblad N, Mogensen M, Petersen I, Højlund K, Levin K, Sahlin K, Beck-Nielsen H, Gaster M.

Biochim Biophys Acta. 2005 Jun 30;1741(1-2):206-14. Epub 2005 Apr 22.

17.

ATGL-mediated triglyceride turnover and the regulation of mitochondrial capacity in skeletal muscle.

Meex RC, Hoy AJ, Mason RM, Martin SD, McGee SL, Bruce CR, Watt MJ.

Am J Physiol Endocrinol Metab. 2015 Jun 1;308(11):E960-70. doi: 10.1152/ajpendo.00598.2014. Epub 2015 Apr 7.

18.

Adipose triglyceride lipase regulation of skeletal muscle lipid metabolism and insulin responsiveness.

Watt MJ, van Denderen BJ, Castelli LA, Bruce CR, Hoy AJ, Kraegen EW, Macaulay L, Kemp BE.

Mol Endocrinol. 2008 May;22(5):1200-12. doi: 10.1210/me.2007-0485. Epub 2008 Jan 17. Retraction in: Mol Endocrinol. 2010 Jun;24(6):1308.

PMID:
18202145
19.

Peroxisome proliferator-activated receptor γ decouples fatty acid uptake from lipid inhibition of insulin signaling in skeletal muscle.

Hu S, Yao J, Howe AA, Menke BM, Sivitz WI, Spector AA, Norris AW.

Mol Endocrinol. 2012 Jun;26(6):977-88. doi: 10.1210/me.2011-1253. Epub 2012 Apr 3.

20.

Myotubes from severely obese type 2 diabetic subjects accumulate less lipids and show higher lipolytic rate than myotubes from severely obese non-diabetic subjects.

Bakke SS, Feng YZ, Nikolić N, Kase ET, Moro C, Stensrud C, Damlien L, Ludahl MO, Sandbu R, Solheim BM, Rustan AC, Hjelmesæth J, Thoresen GH, Aas V.

PLoS One. 2015 Mar 19;10(3):e0119556. doi: 10.1371/journal.pone.0119556. eCollection 2015.

Supplemental Content

Support Center