Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Cyclic di-GMP is essential for the survival of the lyme disease spirochete in ticks.

He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF.

PLoS Pathog. 2011 Jun;7(6):e1002133. doi: 10.1371/journal.ppat.1002133. Epub 2011 Jun 30.

2.

Study of the response regulator Rrp1 reveals its regulatory role in chitobiose utilization and virulence of Borrelia burgdorferi.

Sze CW, Smith A, Choi YH, Yang X, Pal U, Yu A, Li C.

Infect Immun. 2013 May;81(5):1775-87. doi: 10.1128/IAI.00050-13. Epub 2013 Mar 11.

3.

Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission.

Caimano MJ, Dunham-Ems S, Allard AM, Cassera MB, Kenedy M, Radolf JD.

Infect Immun. 2015 Aug;83(8):3043-60. doi: 10.1128/IAI.00315-15. Epub 2015 May 18.

4.

The diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetes.

Kostick JL, Szkotnicki LT, Rogers EA, Bocci P, Raffaelli N, Marconi RT.

Mol Microbiol. 2011 Jul;81(1):219-31. doi: 10.1111/j.1365-2958.2011.07687.x. Epub 2011 Jun 5.

5.

The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi.

Novak EA, Sultan SZ, Motaleb MA.

Front Cell Infect Microbiol. 2014 May 1;4:56. doi: 10.3389/fcimb.2014.00056. eCollection 2014 May 1. Review.

6.

Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence.

Sultan SZ, Pitzer JE, Miller MR, Motaleb MA.

Mol Microbiol. 2010 Jul 1;77(1):128-42. doi: 10.1111/j.1365-2958.2010.07191.x. Epub 2010 Apr 27.

7.

Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle.

Pappas CJ, Iyer R, Petzke MM, Caimano MJ, Radolf JD, Schwartz I.

PLoS Pathog. 2011 Jul;7(7):e1002102. doi: 10.1371/journal.ppat.1002102. Epub 2011 Jul 7.

8.

The hybrid histidine kinase Hk1 is part of a two-component system that is essential for survival of Borrelia burgdorferi in feeding Ixodes scapularis ticks.

Caimano MJ, Kenedy MR, Kairu T, Desrosiers DC, Harman M, Dunham-Ems S, Akins DR, Pal U, Radolf JD.

Infect Immun. 2011 Aug;79(8):3117-30. doi: 10.1128/IAI.05136-11. Epub 2011 May 23.

9.

Interaction of the Lyme disease spirochete with its tick vector.

Caimano MJ, Drecktrah D, Kung F, Samuels DS.

Cell Microbiol. 2016 Jul;18(7):919-27. doi: 10.1111/cmi.12609. Epub 2016 May 24. Review.

10.

Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi.

Freedman JC, Rogers EA, Kostick JL, Zhang H, Iyer R, Schwartz I, Marconi RT.

FEMS Immunol Med Microbiol. 2010 Mar;58(2):285-94. doi: 10.1111/j.1574-695X.2009.00635.x. Epub 2009 Nov 23.

11.

Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi.

Sultan SZ, Pitzer JE, Boquoi T, Hobbs G, Miller MR, Motaleb MA.

Infect Immun. 2011 Aug;79(8):3273-83. doi: 10.1128/IAI.05153-11. Epub 2011 Jun 13.

12.

Cyclic Di-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi.

He M, Zhang JJ, Ye M, Lou Y, Yang XF.

Infect Immun. 2014 Jan;82(1):445-52. doi: 10.1128/IAI.01238-13. Epub 2013 Nov 11.

13.

Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions.

Rogers EA, Terekhova D, Zhang HM, Hovis KM, Schwartz I, Marconi RT.

Mol Microbiol. 2009 Mar;71(6):1551-73. doi: 10.1111/j.1365-2958.2009.06621.x. Epub 2009 Jan 23.

14.

Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks.

Neelakanta G, Li X, Pal U, Liu X, Beck DS, DePonte K, Fish D, Kantor FS, Fikrig E.

PLoS Pathog. 2007 Mar;3(3):e33.

15.

Arthropod- and host-specific Borrelia burgdorferi bbk32 expression and the inhibition of spirochete transmission.

Fikrig E, Feng W, Barthold SW, Telford SR 3rd, Flavell RA.

J Immunol. 2000 May 15;164(10):5344-51.

16.

Identification and characterization of starvation induced msdgc-1 promoter involved in the c-di-GMP turnover.

Bharati BK, Swetha RK, Chatterji D.

Gene. 2013 Oct 10;528(2):99-108. doi: 10.1016/j.gene.2013.07.043. Epub 2013 Aug 7.

PMID:
23932989
17.

Analysis of the Borrelia burgdorferi cyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence.

Pitzer JE, Sultan SZ, Hayakawa Y, Hobbs G, Miller MR, Motaleb MA.

Infect Immun. 2011 May;79(5):1815-25. doi: 10.1128/IAI.00075-11. Epub 2011 Feb 28. Erratum in: Infect Immun. 2011 Jun;79(6):2499.

18.

Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi.

Xu H, He M, He JJ, Yang XF.

Infect Immun. 2010 Jul;78(7):2910-8. doi: 10.1128/IAI.00372-10. Epub 2010 Apr 26.

19.

Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition?

Hayes BM, Dulebohn DP, Sarkar A, Tilly K, Bestor A, Ambroggio X, Rosa PA.

MBio. 2014 Apr 1;5(2):e01017-14. doi: 10.1128/mBio.01017-14. Erratum in: MBio. 2014;5(4):doi: 10.1128/mBio.01608-14.

20.

Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex.

Cotté V, Sabatier L, Schnell G, Carmi-Leroy A, Rousselle JC, Arsène-Ploetze F, Malandrin L, Sertour N, Namane A, Ferquel E, Choumet V.

J Proteomics. 2014 Jan 16;96:29-43. doi: 10.1016/j.jprot.2013.10.033. Epub 2013 Nov 2.

PMID:
24189444

Supplemental Content

Support Center