Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

MicroRNA and messenger RNA analyses of mesenchymal stem cells derived from teeth and the Wharton jelly of umbilical cord.

Chen HC, Lee YS, Sieber M, Lu HT, Wei PC, Wang CN, Peng HH, Chao AS, Cheng PJ, Chang SD, Chen SJ, Wang TH.

Stem Cells Dev. 2012 Apr 10;21(6):911-22. doi: 10.1089/scd.2011.0186. Epub 2011 Aug 21.

PMID:
21732813
2.

Altered expression of microRNAs in the neuronal differentiation of human Wharton's Jelly mesenchymal stem cells.

Zhuang H, Zhang R, Zhang S, Shu Q, Zhang D, Xu G.

Neurosci Lett. 2015 Jul 23;600:69-74. doi: 10.1016/j.neulet.2015.05.061. Epub 2015 Jun 3.

PMID:
26049006
3.

Molecular pathways reflecting poor intrauterine growth are found in Wharton's jelly-derived mesenchymal stem cells.

Sukarieh R, Joseph R, Leow SC, Li Y, Löffler M, Aris IM, Tan JH, Teh AL, Chen L, Holbrook JD, Ng KL, Lee YS, Chong YS, Summers SA, Gluckman PD, Stünkel W.

Hum Reprod. 2014 Oct 10;29(10):2287-301. doi: 10.1093/humrep/deu209. Epub 2014 Aug 16.

PMID:
25129543
4.

Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord.

Hsieh JY, Fu YS, Chang SJ, Tsuang YH, Wang HW.

Stem Cells Dev. 2010 Dec;19(12):1895-910. doi: 10.1089/scd.2009.0485. Epub 2010 Oct 12.

PMID:
20367285
5.
6.

Stage-specific embryonic antigen 4 in Wharton's jelly-derived mesenchymal stem cells is not a marker for proliferation and multipotency.

He H, Nagamura-Inoue T, Tsunoda H, Yuzawa M, Yamamoto Y, Yorozu P, Agata H, Tojo A.

Tissue Eng Part A. 2014 Apr;20(7-8):1314-24. doi: 10.1089/ten.TEA.2013.0333. Epub 2014 Mar 14.

PMID:
24279891
7.

Inhibition of non-muscle myosin II leads to G0/G1 arrest of Wharton's jelly-derived mesenchymal stromal cells.

Sharma T, Kumari P, Pincha N, Mutukula N, Saha S, Jana SS, Ta M.

Cytotherapy. 2014 May;16(5):640-52. doi: 10.1016/j.jcyt.2013.09.003. Epub 2013 Nov 7.

PMID:
24210786
8.

Gene expression modifications in Wharton's Jelly mesenchymal stem cells promoted by prolonged in vitro culturing.

Gatta V, D'Aurora M, Lanuti P, Pierdomenico L, Sperduti S, Palka G, Gesi M, Marchisio M, Miscia S, Stuppia L.

BMC Genomics. 2013 Sep 21;14:635. doi: 10.1186/1471-2164-14-635.

9.

Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells.

Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ.

Cell Tissue Res. 2011 Oct;346(1):53-64. doi: 10.1007/s00441-011-1249-8. Epub 2011 Oct 11.

PMID:
21987220
10.

Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton's jelly-derived mesenchymal stem cells and embryonic stem cells.

Gao LR, Zhang NK, Ding QA, Chen HY, Hu X, Jiang S, Li TC, Chen Y, Wang ZG, Ye Y, Zhu ZM.

Cell Transplant. 2013;22(10):1883-900. doi: 10.3727/096368912X662444. Epub 2013 Feb 4.

PMID:
23394400
11.

Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells.

Tantrawatpan C, Manochantr S, Kheolamai P, U-Pratya Y, Supokawej A, Issaragrisil S.

J Med Assoc Thai. 2013 Sep;96(9):1208-17.

PMID:
24163998
12.

Wharton's jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1(+) subpopulation.

Devito L, Badraiq H, Galleu A, Taheem DK, Codognotto S, Siow R, Khalaf Y, Briley A, Shennan A, Poston L, McGrath J, Gentleman E, Dazzi F, Ilic D.

Regen Med. 2014;9(6):723-32. doi: 10.2217/rme.14.60.

PMID:
25431909
13.

Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies.

Fong CY, Subramanian A, Biswas A, Bongso A.

J Cell Biochem. 2016 Apr;117(4):815-27. doi: 10.1002/jcb.25375. Epub 2015 Sep 17.

PMID:
26365815
14.

MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells.

Chang SJ, Weng SL, Hsieh JY, Wang TY, Chang MD, Wang HW.

BMC Med Genomics. 2011 Sep 19;4:65. doi: 10.1186/1755-8794-4-65.

15.

A simple and serum-free protocol for cryopreservation of human umbilical cord as source of Wharton's jelly mesenchymal stem cells.

Roy S, Arora S, Kumari P, Ta M.

Cryobiology. 2014 Jun;68(3):467-72. doi: 10.1016/j.cryobiol.2014.03.010. Epub 2014 Apr 4.

PMID:
24704519
16.

Mesenchymal stem cells derived from Wharton's jelly: comparative phenotype analysis between tissue and in vitro expansion.

Margossian T, Reppel L, Makdissy N, Stoltz JF, Bensoussan D, Huselstein C.

Biomed Mater Eng. 2012;22(4):243-54. doi: 10.3233/BME-2012-0714.

PMID:
22785368
17.

Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells.

Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, Borlongan CV.

Cytotherapy. 2015 Jan;17(1):18-24. doi: 10.1016/j.jcyt.2014.08.009. Epub 2014 Oct 18. Review.

18.

Role of Nonmuscle Myosin II in Migration of Wharton's Jelly-Derived Mesenchymal Stem Cells.

Arora S, Saha S, Roy S, Das M, Jana SS, Ta M.

Stem Cells Dev. 2015 Sep 1;24(17):2065-77. doi: 10.1089/scd.2015.0095. Epub 2015 Jun 4.

19.

Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity.

Bai J, Hu Y, Wang YR, Liu LF, Chen J, Su SP, Wang Y.

J Geriatr Cardiol. 2012 Jun;9(2):166-71. doi: 10.3724/SP.J.1263.2011.12091.

20.

Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell-like differentiative capacity.

Xu Y, Huang S, Ma K, Fu X, Han W, Sheng Z.

J Tissue Eng Regen Med. 2012 Aug;6(8):645-54. doi: 10.1002/term.468. Epub 2011 Sep 13.

PMID:
21916019

Supplemental Content

Support Center