Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2.

Boualia SK, Gaitan Y, Murawski I, Nadon R, Gupta IR, Bouchard M.

PLoS One. 2011;6(6):e21529. doi: 10.1371/journal.pone.0021529. Epub 2011 Jun 24.

2.

Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/- mouse.

Murawski IJ, Myburgh DB, Favor J, Gupta IR.

Am J Physiol Renal Physiol. 2007 Nov;293(5):F1736-45. Epub 2007 Sep 19.

PMID:
17881463
3.

New congenital anomalies of the kidney and urinary tract and outcomes in Robo2 mutant mice with the inserted piggyBac transposon.

Liu J, Sun L, Shen Q, Wu X, Xu H.

BMC Nephrol. 2016 Jul 26;17(1):98. doi: 10.1186/s12882-016-0308-5.

4.

Hnf1b and Pax2 cooperate to control different pathways in kidney and ureter morphogenesis.

Paces-Fessy M, Fabre M, Lesaulnier C, Cereghini S.

Hum Mol Genet. 2012 Jul 15;21(14):3143-55. doi: 10.1093/hmg/dds141. Epub 2012 Apr 17.

PMID:
22511595
5.

PAX2 polymorphisms and congenital abnormalities of the kidney and urinary tract in a Brazilian pediatric population: evidence for a role in vesicoureteral reflux.

de Miranda DM, Dos Santos Júnior AC, Dos Reis GS, Freitas IS, Carvalho TG, de Marco LA, Oliveira EA, Simões E Silva AC.

Mol Diagn Ther. 2014 Aug;18(4):451-7. doi: 10.1007/s40291-014-0096-1.

PMID:
24633556
6.

[Genetic basis for malformation-associated uropathy and renal dysplasia].

Oppezzo C, Barberis V, Edefonti A, Cusi D, Marra G.

G Ital Nefrol. 2003 Mar-Apr;20(2):120-6. Review. Italian.

PMID:
12746796
7.

Decreased apoptosis and persistence of the common nephric duct during the development of an aberrant vesicoureteral junction in Dlg1 gene-targeted mice.

Iizuka-Kogo A, Akiyama T, Senda T.

Anat Rec (Hoboken). 2013 Dec;296(12):1936-42. doi: 10.1002/ar.22814. Epub 2013 Oct 21.

8.

Deletion of fibroblast growth factor receptor 2 from the peri-wolffian duct stroma leads to ureteric induction abnormalities and vesicoureteral reflux.

Walker KA, Sims-Lucas S, Di Giovanni VE, Schaefer C, Sunseri WM, Novitskaya T, de Caestecker MP, Chen F, Bates CM.

PLoS One. 2013;8(2):e56062. doi: 10.1371/journal.pone.0056062. Epub 2013 Feb 7. Erratum in: PLoS One. 2016 Nov 18;11(11):e0167191.

9.

Ontogeny of congenital anomalies of the kidney and urinary tract, CAKUT.

Miyazaki Y, Ichikawa I.

Pediatr Int. 2003 Oct;45(5):598-604.

PMID:
14521544
10.

Assessing urinary tract defects in mice: methods to detect the presence of vesicoureteric reflux and urinary tract obstruction.

Murawski IJ, Watt CL, Gupta IR.

Methods Mol Biol. 2012;886:351-62. doi: 10.1007/978-1-61779-851-1_31.

PMID:
22639276
11.

Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/- mutant mice.

Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M.

Hum Mol Genet. 2000 Jan 1;9(1):1-11.

PMID:
10587573
12.

Non-canonical Wnt5a/Ror2 signaling regulates kidney morphogenesis by controlling intermediate mesoderm extension.

Yun K, Ajima R, Sharma N, Costantini F, Mackem S, Lewandoski M, Yamaguchi TP, Perantoni AO.

Hum Mol Genet. 2014 Dec 20;23(25):6807-14. doi: 10.1093/hmg/ddu397. Epub 2014 Jul 31.

13.

Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux.

Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan Y, Xi Q, Li QG, Sanlaville D, Andrews W, Sundaresan V, Bi W, Yan J, Giltay JC, Wijmenga C, de Jong TP, Feather SA, Woolf AS, Rao Y, Lupski JR, Eccles MR, Quade BJ, Gusella JF, Morton CC, Maas RL.

Am J Hum Genet. 2007 Apr;80(4):616-32. Epub 2007 Feb 14.

14.

Nephric duct insertion requires EphA4/EphA7 signaling from the pericloacal mesenchyme.

Weiss AC, Airik R, Bohnenpoll T, Greulich F, Foik A, Trowe MO, Rudat C, Costantini F, Adams RH, Kispert A.

Development. 2014 Sep;141(17):3420-30. doi: 10.1242/dev.113928.

15.

The significance of Pax2 expression in the ureter epithelium of children with vesicoureteric reflux.

Zheng Y, Xu J, Guo W, Xu H, Chen J, Shen Q, Zhang X, Zhai Y.

Hum Pathol. 2015 Jul;46(7):963-70. doi: 10.1016/j.humpath.2015.01.007. Epub 2015 Jan 16.

PMID:
25912758
16.

Embryogenesis of the congenital anomalies of the kidney and the urinary tract.

Kuwayama F, Miyazaki Y, Ichikawa I.

Nephrol Dial Transplant. 2002;17 Suppl 9:45-7.

PMID:
12386286
17.

Vesicoureteric reflux and renal malformations: a developmental problem.

Murawski IJ, Gupta IR.

Clin Genet. 2006 Feb;69(2):105-17. Review.

PMID:
16433689
18.

Mutations in the leukemia inhibitory factor receptor (LIFR) gene and Lifr deficiency cause urinary tract malformations.

Kosfeld A, Brand F, Weiss AC, Kreuzer M, Goerk M, Martens H, Schubert S, Schäfer AK, Riehmer V, Hennies I, Bräsen JH, Pape L, Amann K, Krogvold L, Bjerre A, Daniel C, Kispert A, Haffner D, Weber RG.

Hum Mol Genet. 2017 May 1;26(9):1716-1731. doi: 10.1093/hmg/ddx086.

PMID:
28334964
19.

How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT.

Pope JC 4th, Brock JW 3rd, Adams MC, Stephens FD, Ichikawa I.

J Am Soc Nephrol. 1999 Sep;10(9):2018-28. Review.

20.

Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter.

Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I.

J Clin Invest. 2000 Apr;105(7):863-73.

Supplemental Content

Support Center