Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136


Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars.

Wang S, Fang W, Wang C, St Leger RJ.

PLoS Pathog. 2011 Jun;7(6):e1002097. doi: 10.1371/journal.ppat.1002097. Epub 2011 Jun 23.


Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum.

Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma LJ, St Leger RJ, Zhao GP, Pei Y, Feng MG, Xia Y, Wang C.

PLoS Genet. 2011 Jan 6;7(1):e1001264. doi: 10.1371/journal.pgen.1001264.


The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species.

Pattemore JA, Hane JK, Williams AH, Wilson BA, Stodart BJ, Ash GJ.

BMC Genomics. 2014 Aug 7;15:660. doi: 10.1186/1471-2164-15-660.


The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons.

Lin L, Fang W, Liao X, Wang F, Wei D, St Leger RJ.

PLoS One. 2011;6(12):e28984. doi: 10.1371/journal.pone.0028984. Epub 2011 Dec 16.


Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects.

Liao X, Lovett B, Fang W, St Leger RJ.

Microbiology. 2017 Jul;163(7):980-991. doi: 10.1099/mic.0.000494. Epub 2017 Jul 21.


MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex.

Lopes RB, Faria M, Souza DA, Bloch C Jr, Silva LP, Humber RA.

Mycologia. 2014 Jul-Aug;106(4):865-78. doi: 10.3852/13-401. Epub 2014 Jul 1.


Insights from the genome of Ophiocordyceps polyrhachis-furcata to pathogenicity and host specificity in insect fungi.

Wichadakul D, Kobmoo N, Ingsriswang S, Tangphatsornruang S, Chantasingh D, Luangsa-ard JJ, Eurwilaichitr L.

BMC Genomics. 2015 Oct 28;16:881. doi: 10.1186/s12864-015-2101-4.


Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions.

Tounou AK, Kooyman C, Douro-Kpindou OK, Poehling HM.

J Invertebr Pathol. 2008 Mar;97(3):203-10. Epub 2007 Oct 10.


Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii.

Duan Z, Chen Y, Huang W, Shang Y, Chen P, Wang C.

Autophagy. 2013 Apr;9(4):538-49. doi: 10.4161/auto.23575. Epub 2013 Feb 4.


Contributions of β-tubulin to cellular morphology, sporulation and virulence in the insect-fungal pathogen, Metarhizium acridum.

Zhang J, Jin K, Xia Y.

Fungal Genet Biol. 2017 Jun;103:16-24. doi: 10.1016/j.fgb.2017.03.005. Epub 2017 Mar 20.


The inhibitory effect of the fungal toxin, destruxin A, on behavioural fever in the desert locust.

Hunt VL, Charnley AK.

J Insect Physiol. 2011 Oct;57(10):1341-6. doi: 10.1016/j.jinsphys.2011.06.008. Epub 2011 Jun 25.


Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii.

Fang W, St Leger RJ.

Plant Physiol. 2010 Nov;154(3):1549-57. doi: 10.1104/pp.110.163014. Epub 2010 Sep 13.


Secondary metabolite gene clusters in the entomopathogen fungus Metarhizium anisopliae: genome identification and patterns of expression in a cuticle infection model.

Sbaraini N, Guedes RL, Andreis FC, Junges Â, de Morais GL, Vainstein MH, de Vasconcelos AT, Schrank A.

BMC Genomics. 2016 Oct 25;17(Suppl 8):736.


Development of a simple and rapid Agrobacterium tumefaciens-mediated transformation system for the entomopathogenic fungus Metarhizium anisopliae var. acridum.

Duarte RT, Staats CC, Fungaro MH, Schrank A, Vainsten MH, Furlaneto-Maia L, Nakamura CV, de Souza W, Furlaneto MC.

Lett Appl Microbiol. 2007 Mar;44(3):248-54.

Supplemental Content

Support Center