Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 224

1.

Transport properties of graphene nanoribbons with side-attached organic molecules.

Rosales L, Pacheco M, Barticevic Z, Latgé A, Orellana PA.

Nanotechnology. 2008 Feb 13;19(6):065402. doi: 10.1088/0957-4484/19/6/065402. Epub 2008 Jan 23.

PMID:
21730698
2.

Conductance gaps in graphene ribbons designed by molecular aggregations.

Rosales L, Pacheco M, Barticevic Z, Latgé A, Orellana PA.

Nanotechnology. 2009 Mar 4;20(9):095705. doi: 10.1088/0957-4484/20/9/095705. Epub 2009 Feb 11.

PMID:
19417501
3.

The effects of defects on the conductance of graphene nanoribbons.

Gorjizadeh N, Farajian AA, Kawazoe Y.

Nanotechnology. 2009 Jan 7;20(1):015201. doi: 10.1088/0957-4484/20/1/015201. Epub 2008 Dec 5.

PMID:
19417243
4.

First-principles study of heat transport properties of graphene nanoribbons.

Tan ZW, Wang JS, Gan CK.

Nano Lett. 2011 Jan 12;11(1):214-9. doi: 10.1021/nl103508m. Epub 2010 Dec 15.

PMID:
21158401
5.

Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.

Barone V, Hod O, Peralta JE, Scuseria GE.

Acc Chem Res. 2011 Apr 19;44(4):269-79. doi: 10.1021/ar100137c. Epub 2011 Mar 9.

PMID:
21388164
6.

Transport properties of two finite armchair graphene nanoribbons.

Rosales L, González JW.

Nanoscale Res Lett. 2013 Jan 2;8(1):1. doi: 10.1186/1556-276X-8-1.

7.

Thermal transport by phonons in zigzag graphene nanoribbons with structural defects.

Xie ZX, Chen KQ, Duan W.

J Phys Condens Matter. 2011 Aug 10;23(31):315302. doi: 10.1088/0953-8984/23/31/315302. Epub 2011 Jul 19.

PMID:
21772066
8.
9.

Quantum transport through a graphene nanoribbon-superconductor junction.

Sun QF, Xie XC.

J Phys Condens Matter. 2009 Aug 26;21(34):344204. doi: 10.1088/0953-8984/21/34/344204. Epub 2009 Jul 27.

PMID:
21715779
10.

Quasiparticle energies and band gaps in graphene nanoribbons.

Yang L, Park CH, Son YW, Cohen ML, Louie SG.

Phys Rev Lett. 2007 Nov 2;99(18):186801. Epub 2007 Nov 1.

PMID:
17995426
11.

Electronic transport through side-contacted graphene nanoribbons: effects of overlap, aspect ratio and orientation.

Krompiewski S.

Nanotechnology. 2011 Nov 4;22(44):445201. doi: 10.1088/0957-4484/22/44/445201. Epub 2011 Oct 6.

PMID:
21975438
12.

A gate-induced switch in zigzag graphene nanoribbons and charging effects.

Cheraghchi H, Esmailzade H.

Nanotechnology. 2010 May 21;21(20):205306. doi: 10.1088/0957-4484/21/20/205306. Epub 2010 Apr 26.

PMID:
20418607
13.

Control of thermal and electronic transport in defect-engineered graphene nanoribbons.

Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Cağın T.

ACS Nano. 2011 May 24;5(5):3779-87. doi: 10.1021/nn200114p. Epub 2011 Apr 19.

PMID:
21452884
14.

Mechanical manipulations on electronic transport of graphene nanoribbons.

Wang J, Zhang G, Ye F, Wang X.

J Phys Condens Matter. 2015 Jun 10;27(22):225305. doi: 10.1088/0953-8984/27/22/225305. Epub 2015 May 18.

PMID:
25985040
15.

Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.

Owens FJ.

J Chem Phys. 2008 May 21;128(19):194701. doi: 10.1063/1.2905215.

PMID:
18500880
16.

Electronic states of graphene nanoribbons and analytical solutions.

Wakabayashi K, Sasaki KI, Nakanishi T, Enoki T.

Sci Technol Adv Mater. 2010 Nov 29;11(5):054504. eCollection 2010 Oct. Review.

17.

Electronic structure and transport of a carbon chain between graphene nanoribbon leads.

Zhang GP, Fang XW, Yao YX, Wang CZ, Ding ZJ, Ho KM.

J Phys Condens Matter. 2011 Jan 19;23(2):025302. doi: 10.1088/0953-8984/23/2/025302. Epub 2010 Dec 13.

PMID:
21406839
18.

A guide to the design of electronic properties of graphene nanoribbons.

Yazyev OV.

Acc Chem Res. 2013 Oct 15;46(10):2319-28.

PMID:
23282074
19.

Graphene nanoribbons in criss-crossed electric and magnetic fields.

Roslyak O, Gumbs G, Huang D.

Philos Trans A Math Phys Eng Sci. 2010 Dec 13;368(1932):5431-43. doi: 10.1098/rsta.2010.0215.

20.

Negative differential resistance devices by using N-doped graphene nanoribbons.

Huang J, Wang W, Li Q, Yang J.

J Chem Phys. 2014 Apr 28;140(16):164703. doi: 10.1063/1.4871739.

PMID:
24784295

Supplemental Content

Support Center