Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well.

Yeh DM, Chen CY, Lu YC, Huang CF, Yang CC.

Nanotechnology. 2007 Jul 4;18(26):265402. doi: 10.1088/0957-4484/18/26/265402. Epub 2007 Jun 5.

PMID:
21730403
2.

Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells.

Huang CW, Tseng HY, Chen CY, Liao CH, Hsieh C, Chen KY, Lin HY, Chen HS, Jung YL, Kiang YW, Yang CC.

Nanotechnology. 2011 Nov 25;22(47):475201. doi: 10.1088/0957-4484/22/47/475201. Epub 2011 Nov 2.

PMID:
22049151
3.

Localized surface plasmon-induced emission enhancement of a green light-emitting diode.

Yeh DM, Huang CF, Chen CY, Lu YC, Yang CC.

Nanotechnology. 2008 Aug 27;19(34):345201. doi: 10.1088/0957-4484/19/34/345201. Epub 2008 Jul 15.

PMID:
21730639
4.

Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films.

Estrin Y, Rich DH, Keller S, DenBaars SP.

J Phys Condens Matter. 2015 Jul 8;27(26):265802. doi: 10.1088/0953-8984/27/26/265802. Epub 2015 Jun 15.

PMID:
26076324
5.

Emission enhancement of InGaN/GaN light emitting diode by using Ag nanoparticles.

Lee KS, Kim SP, Lee DU, Kim EK.

J Nanosci Nanotechnol. 2014 Oct;14(10):7830-4.

PMID:
25942875
6.

Quantum confined Stark effect of InGaN/GaN multi-quantum disks grown on top of GaN nanorods.

Park YS, Holmes MJ, Kang TW, Taylor RA.

Nanotechnology. 2010 Mar 19;21(11):115401. doi: 10.1088/0957-4484/21/11/115401. Epub 2010 Feb 22.

PMID:
20173227
7.

Coupling of surface plasmon with InGaAs/GaAs quantum well emission by gold nanodisk arrays.

Gao H, Tung KH, Teng J, Chua SJ, Xiang N.

Appl Opt. 2013 Jun 1;52(16):3698-702. doi: 10.1364/AO.52.003698.

PMID:
23736322
8.

Localized surface plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles.

Jang LW, Jeon DW, Sahoo T, Jo DS, Ju JW, Lee SJ, Baek JH, Yang JK, Song JH, Polyakov AY, Lee IH.

Opt Express. 2012 Jan 30;20(3):2116-23. doi: 10.1364/OE.20.002116.

PMID:
22330452
9.

Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering.

Lin CH, Hsieh C, Tu CG, Kuo Y, Chen HS, Shih PY, Liao CH, Kiang YW, Yang CC, Lai CH, He GR, Yeh JH, Hsu TC.

Opt Express. 2014 May 5;22 Suppl 3:A842-56. doi: 10.1364/OE.22.00A842.

PMID:
24922391
10.

Dependencies of the emission behavior and quantum well structure of a regularly-patterned, InGaN/GaN quantum-well nanorod array on growth condition.

Liao CH, Tu CG, Chang WM, Su CY, Shih PY, Chen HT, Yao YF, Hsieh C, Chen HS, Lin CH, Yu CK, Kiang YW, Yang CC.

Opt Express. 2014 Jul 14;22(14):17303-19. doi: 10.1364/OE.22.017303.

PMID:
25090544
11.

A 100 nm thick InGaN/GaN multiple quantum-well column-crystallized thin film deposited on Si(111) substrate and its micromachining.

Hu FR, Kanamori Y, Ochi K, Zhao Y, Wakui M, Hane K.

Nanotechnology. 2008 Jan 23;19(3):035305. doi: 10.1088/0957-4484/19/03/035305. Epub 2007 Dec 13.

PMID:
21817568
12.

Optical dynamics of energy-transfer from a CdZnO quantum well to a proximal Ag nanostructure.

Matsui H, Nomura W, Yatsui T, Ohtsu M, Tabata H.

Opt Lett. 2011 Oct 1;36(19):3735-7. doi: 10.1364/OL.36.003735.

PMID:
21964080
13.

Linearly polarized light emission from InGaN/GaN quantum well structure with high indium composition.

Song H, Kim EK, Han IK, Lee SH, Hwang SM.

J Nanosci Nanotechnol. 2011 Oct;11(10):9222-6.

PMID:
22400327
14.

An InGaN/GaN single quantum well improved by surface modification of GaN films.

Fang ZL, Kang JY, Shen WZ.

Nanotechnology. 2009 Jan 28;20(4):045401. doi: 10.1088/0957-4484/20/4/045401. Epub 2008 Dec 18.

PMID:
19417316
15.

Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode.

Chen CY, Hsieh C, Liao CH, Chung WL, Chen HT, Cao W, Chang WM, Chen HS, Yao YF, Ting SY, Kiang YW, Yang CC, Hu X.

Opt Express. 2012 May 7;20(10):11321-35. doi: 10.1364/OE.20.011321.

PMID:
22565753
16.

Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating.

Kuo Y, Chang WY, Lin CH, Yang CC, Kiang YW.

Opt Express. 2015 Nov 30;23(24):30709-20. doi: 10.1364/OE.23.030709.

PMID:
26698703
17.

Coupling of spontaneous emission from GaN-AlN quantum dots into silver surface plasmons.

Neogi A, MorkoƧ H, Kuroda T, Tackeuchi A.

Opt Lett. 2005 Jan 1;30(1):93-5.

PMID:
15648649
18.

Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs.

Zhang F, Liu J, You G, Zhang C, Mohney SE, Park MJ, Kwak JS, Wang Y, Koleske DD, Xu J.

Opt Express. 2012 Mar 12;20 Suppl 2:A333-9. doi: 10.1364/OE.20.00A333.

PMID:
22418683
19.

Surface plasmon-quantum dot coupling from arrays of nanoholes.

Brolo AG, Kwok SC, Cooper MD, Moffitt MG, Wang CW, Gordon R, Riordon J, Kavanagh KL.

J Phys Chem B. 2006 Apr 27;110(16):8307-13.

PMID:
16623513
20.

Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement.

Fadil A, Iida D, Chen Y, Ma J, Ou Y, Petersen PM, Ou H.

Sci Rep. 2014 Sep 22;4:6392. doi: 10.1038/srep06392.

Supplemental Content

Support Center