Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals.

Dorfs D, Härtling T, Miszta K, Bigall NC, Kim MR, Genovese A, Falqui A, Povia M, Manna L.

J Am Chem Soc. 2011 Jul 27;133(29):11175-80. doi: 10.1021/ja2016284. Epub 2011 Jul 6.

PMID:
21728384
2.

Modulation of Cu(2-x)S Nanocrystal Plasmon Resonance through Reversible Photoinduced Electron Transfer.

Alam R, Labine M, Karwacki CJ, Kamat PV.

ACS Nano. 2016 Feb 23;10(2):2880-6. doi: 10.1021/acsnano.5b08066. Epub 2016 Feb 11.

PMID:
26853633
3.

Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.

Kriegel I, Rodríguez-Fernández J, Wisnet A, Zhang H, Waurisch C, Eychmüller A, Dubavik A, Govorov AO, Feldmann J.

ACS Nano. 2013 May 28;7(5):4367-77. doi: 10.1021/nn400894d. Epub 2013 Apr 22.

PMID:
23570329
4.

Control of plasmonic and interband transitions in colloidal indium nitride nanocrystals.

Palomaki PK, Miller EM, Neale NR.

J Am Chem Soc. 2013 Sep 25;135(38):14142-50. doi: 10.1021/ja404599g. Epub 2013 Sep 13.

PMID:
23972038
5.

Tuning the localized surface plasmon resonance in Cu(2-x)Se nanocrystals by postsynthetic ligand exchange.

Balitskii OA, Sytnyk M, Stangl J, Primetzhofer D, Groiss H, Heiss W.

ACS Appl Mater Interfaces. 2014 Oct 22;6(20):17770-5. doi: 10.1021/am504296y. Epub 2014 Oct 1.

6.

Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals.

Kriegel I, Jiang C, Rodríguez-Fernández J, Schaller RD, Talapin DV, da Como E, Feldmann J.

J Am Chem Soc. 2012 Jan 25;134(3):1583-90. doi: 10.1021/ja207798q. Epub 2012 Jan 13.

PMID:
22148506
7.

Plasmon dynamics in colloidal Cu₂-xSe nanocrystals.

Scotognella F, Della Valle G, Srimath Kandada AR, Dorfs D, Zavelani-Rossi M, Conforti M, Miszta K, Comin A, Korobchevskaya K, Lanzani G, Manna L, Tassone F.

Nano Lett. 2011 Nov 9;11(11):4711-7. doi: 10.1021/nl202390s. Epub 2011 Sep 30.

PMID:
21939261
8.

Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence.

Lie SQ, Wang DM, Gao MX, Huang CZ.

Nanoscale. 2014 Sep 7;6(17):10289-96. doi: 10.1039/c4nr02294g.

PMID:
25065365
9.

Localized surface plasmon resonances of anisotropic semiconductor nanocrystals.

Hsu SW, On K, Tao AR.

J Am Chem Soc. 2011 Nov 30;133(47):19072-5. doi: 10.1021/ja2089876. Epub 2011 Nov 3.

PMID:
22044349
10.

Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

Muhammed MA, Döblinger M, Rodríguez-Fernández J.

J Am Chem Soc. 2015 Sep 16;137(36):11666-77. doi: 10.1021/jacs.5b05337. Epub 2015 Sep 2.

PMID:
26332445
11.

Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling.

Xie Y, Carbone L, Nobile C, Grillo V, D'Agostino S, Della Sala F, Giannini C, Altamura D, Oelsner C, Kryschi C, Cozzoli PD.

ACS Nano. 2013 Aug 27;7(8):7352-69. doi: 10.1021/nn403035s. Epub 2013 Jul 23.

PMID:
23859591
12.

Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics.

Guo Q, Ji M, Yao Y, Liu M, Luo ZC, Zhang S, Liu X, Qiu J.

Nanoscale. 2016 Nov 3;8(43):18277-18281.

PMID:
27763650
13.

Anomalous plasmon resonance from confined diffusive charges: high quality and tunability from mid to far infrared wavebands.

Gu Y, Li X, Chen J, Zeng H.

Opt Express. 2016 Dec 26;24(26):29908-29921. doi: 10.1364/OE.24.029908.

PMID:
28059375
14.

The non-aqueous synthesis of shape controllable Cu(2-x)S plasmonic nanostructures in a continuous-flow millifluidic chip for the generation of photo-induced heating.

Cheung TL, Hong L, Rao N, Yang C, Wang L, Lai WJ, Chong PH, Law WC, Yong KT.

Nanoscale. 2016 Mar 28;8(12):6609-22. doi: 10.1039/c5nr09144f.

PMID:
26940019
15.

Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals.

Diroll BT, Guo P, Chang RP, Schaller RD.

ACS Nano. 2016 Nov 22;10(11):10099-10105. Epub 2016 Oct 24.

PMID:
27754640
16.

Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

Zeng D, Gong P, Chen Y, Zhang Q, Xie Q, Peng DL.

Nanoscale. 2016 Jun 2;8(22):11602-10. doi: 10.1039/c6nr02055k.

PMID:
27216552
17.

Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides.

Zhao Y, Pan H, Lou Y, Qiu X, Zhu J, Burda C.

J Am Chem Soc. 2009 Apr 1;131(12):4253-61. doi: 10.1021/ja805655b.

PMID:
19267472
18.

Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals.

Caldwell AH, Ha DH, Ding X, Robinson RD.

J Chem Phys. 2014 Oct 28;141(16):164125. doi: 10.1063/1.4897635.

PMID:
25362290
19.

Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability.

Wang HJ, Yang KH, Hsu SC, Huang MH.

Nanoscale. 2016 Jan 14;8(2):965-72. doi: 10.1039/c5nr06847a.

PMID:
26660504
20.

Maximizing the photo catalytic and photo response properties of multimodal plasmonic Ag/WO(3-x) heterostructure nanorods by variation of the Ag size.

Ghosh S, Saha M, Paul S, De SK.

Nanoscale. 2015 Nov 21;7(43):18284-98. doi: 10.1039/c5nr05185a.

PMID:
26486253

Supplemental Content

Support Center