Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 158

1.

Particle size effects in the thermal conductivity enhancement of copper-based nanofluids.

Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O.

Nanoscale Res Lett. 2011 Mar 14;6(1):217. doi: 10.1186/1556-276X-6-217.

2.
3.

An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes.

Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N.

Nanoscale Res Lett. 2014 Mar 28;9(1):151. doi: 10.1186/1556-276X-9-151. eCollection 2014.

4.

Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry.

Bhanushali S, Jason NN, Ghosh P, Ganesh A, Simon GP, Cheng W.

ACS Appl Mater Interfaces. 2017 Jun 7;9(22):18925-18935. doi: 10.1021/acsami.7b03339. Epub 2017 May 22.

PMID:
28471162
5.

Preparation and properties of copper-oil-based nanofluids.

Li D, Xie W, Fang W.

Nanoscale Res Lett. 2011 May 5;6(1):373. doi: 10.1186/1556-276X-6-373.

6.

Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions.

Ruan B, Jacobi AM.

Nanoscale Res Lett. 2012 Feb 14;7:127. doi: 10.1186/1556-276X-7-127.

7.

Nanodiamond nanofluids for enhanced thermal conductivity.

Branson BT, Beauchamp PS, Beam JC, Lukehart CM, Davidson JL.

ACS Nano. 2013 Apr 23;7(4):3183-9. doi: 10.1021/nn305664x. Epub 2013 Mar 28.

PMID:
23488739
8.

Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.

Balla HH, Abdullah S, Mohdfaizal W, Zulkifli R, Sopian K.

J Oleo Sci. 2013;62(7):533-9.

9.

Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique.

Paul G, Pal T, Manna I.

J Colloid Interface Sci. 2010 Sep 1;349(1):434-7. doi: 10.1016/j.jcis.2010.05.086. Epub 2010 Jun 1.

PMID:
20609848
10.

An investigation on the thermal effusivity of nanofluids Containing Al(2)O(3) and CuO nanoparticles.

Noroozi M, Zakaria A, Moksin MM, Wahab ZA.

Int J Mol Sci. 2012;13(8):10350-8. doi: 10.3390/ijms130810350. Epub 2012 Aug 20.

11.

Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets.

Mehrali M, Sadeghinezhad E, Latibari ST, Kazi SN, Mehrali M, Zubir MN, Metselaar HS.

Nanoscale Res Lett. 2014 Jan 13;9(1):15. doi: 10.1186/1556-276X-9-15.

12.

Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids.

Zhao N, Li Z.

Materials (Basel). 2017 May 19;10(5). pii: E552. doi: 10.3390/ma10050552.

13.

Studies on the role of unsaturation in the fatty acid surfactant molecule on the thermal conductivity of magnetite nanofluids.

Lenin R, Joy PA.

J Colloid Interface Sci. 2017 Nov 15;506:162-168. doi: 10.1016/j.jcis.2017.07.038. Epub 2017 Jul 14.

PMID:
28735189
14.

On the thermal conductivity of gold nanoparticle colloids.

Shalkevich N, Escher W, B├╝rgi T, Michel B, Si-Ahmed L, Poulikakos D.

Langmuir. 2010 Jan 19;26(2):663-70. doi: 10.1021/la9022757.

PMID:
19681632
15.

Ultrasonic-aided fabrication of gold nanofluids.

Chen HJ, Wen D.

Nanoscale Res Lett. 2011 Mar 7;6(1):198. doi: 10.1186/1556-276X-6-198.

16.

Evaluation on dispersion behavior of the aqueous copper nano-suspensions.

Li X, Zhu D, Wang X.

J Colloid Interface Sci. 2007 Jun 15;310(2):456-63. Epub 2007 Mar 1. Erratum in: J Colloid Interface Sci. 2007 Oct 15;314(2):749.

PMID:
17395195
17.

A molecular dynamics-stochastic model for thermal conductivity of nanofluids and its experimental validation.

Ghosh MM, Roy S, Pabi SK, Ghosh S.

J Nanosci Nanotechnol. 2011 Mar;11(3):2196-207.

PMID:
21449369
18.

Investigation of Al2O3-MWCNTs hybrid dispersion in water and their thermal characterization.

Nine MJ, Batmunkh M, Kim JH, Chung HS, Jeong HM.

J Nanosci Nanotechnol. 2012 Jun;12(6):4553-9.

PMID:
22905499
19.

Tuning the thermal diffusivity of silver based nanofluids by controlling nanoparticle aggregation.

Agresti F, Barison S, Battiston S, Pagura C, Colla L, Fedele L, Fabrizio M.

Nanotechnology. 2013 Sep 13;24(36):365601. doi: 10.1088/0957-4484/24/36/365601. Epub 2013 Aug 13.

PMID:
23942258
20.

Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory.

Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV.

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 1):061203. Epub 2007 Dec 28.

PMID:
18233838

Supplemental Content

Support Center