Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

Poly(glycoamidoamine)s: a broad class of carbohydrate-containing polycations for nucleic acid delivery.

Ingle NP, Malone B, Reineke TM.

Trends Biotechnol. 2011 Sep;29(9):443-53. doi: 10.1016/j.tibtech.2011.04.012. Epub 2011 Jun 24. Review.

PMID:
21705101
3.
4.
5.

Structure-activity examination of poly(glycoamidoguanidine)s: glycopolycations containing guanidine units for nucleic acid delivery.

Taori VP, Lu H, Reineke TM.

Biomacromolecules. 2011 Jun 13;12(6):2055-63. doi: 10.1021/bm101537f. Epub 2011 May 12.

PMID:
21506608
6.

Poly(glycoamidoamine) vehicles promote pDNA uptake through multiple routes and efficient gene expression via caveolae-mediated endocytosis.

McLendon PM, Fichter KM, Reineke TM.

Mol Pharm. 2010 Jun 7;7(3):738-50. doi: 10.1021/mp900282e.

PMID:
20349982
7.

Single cell kinetics of intracellular, nonviral, nucleic acid delivery vehicle acidification and trafficking.

Kulkarni RP, Mishra S, Fraser SE, Davis ME.

Bioconjug Chem. 2005 Jul-Aug;16(4):986-94.

PMID:
16029041
8.

Degradation of poly(glycoamidoamine) DNA delivery vehicles: polyamide hydrolysis at physiological conditions promotes DNA release.

Liu Y, Reineke TM.

Biomacromolecules. 2010 Feb 8;11(2):316-25. doi: 10.1021/bm9008233.

PMID:
20058913
9.

Live-cell fluorescent microscopy platforms for real-time monitoring of polyplex-cell interaction: basic guidelines.

Parhamifar L, Wu L, Andersen H, Moghimi SM.

Methods. 2014 Jul 1;68(2):300-7. doi: 10.1016/j.ymeth.2014.02.004. Epub 2014 Feb 18. Review.

PMID:
24561166
10.

Interaction of poly(glycoamidoamine) DNA delivery vehicles with cell-surface glycosaminoglycans leads to polyplex internalization in a manner not solely dependent on charge.

McLendon PM, Buckwalter DJ, Davis EM, Reineke TM.

Mol Pharm. 2010 Oct 4;7(5):1757-68. doi: 10.1021/mp100135n. Epub 2010 Aug 16.

PMID:
20604555
11.

Glycotargeting to improve cellular delivery efficiency of nucleic acids.

Yan H, Tram K.

Glycoconj J. 2007 Apr;24(2-3):107-23. Epub 2007 Feb 1. Review.

PMID:
17268860
12.
13.

Bioresponsive polymer-based nucleic acid carriers.

Takemoto H, Miyata K, Nishiyama N, Kataoka K.

Adv Genet. 2014;88:289-323. doi: 10.1016/B978-0-12-800148-6.00010-9. Review.

PMID:
25409610
14.

Carbohydrate polymers for nonviral nucleic acid delivery.

Sizovs A, McLendon PM, Srinivasachari S, Reineke TM.

Top Curr Chem. 2010;296:131-90. Review.

15.

Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers.

Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR, Mishra S, Heidel JD.

Curr Med Chem. 2004 Jan;11(2):179-97. Review.

PMID:
14754416
16.

Cross-linked polyethylenimine-hexametaphosphate nanoparticles to deliver nucleic acids therapeutics.

Patnaik S, Arif M, Pathak A, Kurupati R, Singh Y, Gupta KC.

Nanomedicine. 2010 Apr;6(2):344-54. doi: 10.1016/j.nano.2009.07.007. Epub 2009 Aug 20.

PMID:
19699318
17.

Deciphering the role of hydrogen bonding in enhancing pDNA-polycation interactions.

Prevette LE, Kodger TE, Reineke TM, Lynch ML.

Langmuir. 2007 Sep 11;23(19):9773-84. Epub 2007 Aug 18.

PMID:
17705512
18.

Structural effects of carbohydrate-containing polycations on gene delivery. 2. Charge center type.

Reineke TM, Davis ME.

Bioconjug Chem. 2003 Jan-Feb;14(1):255-61.

PMID:
12526716
19.

Nano-Sized Sunflower Polycations As Effective Gene Transfer Vehicles.

Cheng Y, Wei H, Tan JK, Peeler DJ, Maris DO, Sellers DL, Horner PJ, Pun SH.

Small. 2016 May;12(20):2750-8. doi: 10.1002/smll.201502930. Epub 2016 Apr 7.

20.

Responsive polyelectrolyte complexes for triggered release of nucleic acid therapeutics.

Soliman M, Allen S, Davies MC, Alexander C.

Chem Commun (Camb). 2010 Aug 14;46(30):5421-33. doi: 10.1039/c0cc00794c. Epub 2010 Jul 5. Review.

PMID:
20603664

Supplemental Content

Support Center