Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Mutually reinforced multicomponent polysaccharide networks.

Hyland LL, Taraban MB, Hammouda B, Bruce Yu Y.

Biopolymers. 2011 Dec;95(12):840-51. doi: 10.1002/bip.21687. Epub 2011 Jun 22.

2.

Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering.

Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ.

Mater Sci Eng C Mater Biol Appl. 2015 Sep;54:20-5. doi: 10.1016/j.msec.2015.04.033. Epub 2015 Apr 22.

PMID:
26046263
3.

Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds.

Tiğli RS, Gümüşderelioğlu M.

J Mater Sci Mater Med. 2009 Mar;20(3):699-709. doi: 10.1007/s10856-008-3624-x. Epub 2008 Nov 6.

PMID:
18987950
4.

Poly-L-lactide/sodium alginate/chitosan microsphere hybrid scaffolds made with braiding manufacture and adhesion technique: Solution to the incongruence between porosity and compressive strength.

Lin JH, Chen CK, Wen SP, Lou CW.

Mater Sci Eng C Mater Biol Appl. 2015;52:111-20. doi: 10.1016/j.msec.2015.03.034. Epub 2015 Mar 24.

PMID:
25953547
5.

Chitosan-alginate hybrid scaffolds for bone tissue engineering.

Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M.

Biomaterials. 2005 Jun;26(18):3919-28.

PMID:
15626439
6.

Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering.

Cattalini JP, Roether J, Hoppe A, Pishbin F, Haro Durand L, Gorustovich A, Boccaccini AR, Lucangioli S, Mouriño V.

Biomed Mater. 2016 Oct 21;11(6):065003.

PMID:
27767020
7.

Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization.

Han J, Zhou Z, Yin R, Yang D, Nie J.

Int J Biol Macromol. 2010 Mar 1;46(2):199-205. doi: 10.1016/j.ijbiomac.2009.11.004. Epub 2009 Nov 24.

PMID:
19941890
8.

Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

Florczyk SJ, Kim DJ, Wood DL, Zhang M.

J Biomed Mater Res A. 2011 Sep 15;98(4):614-20. doi: 10.1002/jbm.a.33153. Epub 2011 Jun 30.

PMID:
21721118
9.

Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering.

Ko HF, Sfeir C, Kumta PN.

Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):1981-97. doi: 10.1098/rsta.2010.0009.

10.

Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution.

Boontheekul T, Kong HJ, Mooney DJ.

Biomaterials. 2005 May;26(15):2455-65.

PMID:
15585248
11.

Alginate and chitosan polyion complex hybrid fibers for scaffolds in ligament and tendon tissue engineering.

Majima T, Funakosi T, Iwasaki N, Yamane ST, Harada K, Nonaka S, Minami A, Nishimura S.

J Orthop Sci. 2005 May;10(3):302-7.

PMID:
15928894
12.

Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue.

Algul D, Sipahi H, Aydin A, Kelleci F, Ozdatli S, Yener FG.

Int J Biol Macromol. 2015 Aug;79:363-9. doi: 10.1016/j.ijbiomac.2015.05.005. Epub 2015 May 14.

PMID:
25982954
13.

Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan.

Iwasaki N, Yamane ST, Majima T, Kasahara Y, Minami A, Harada K, Nonaka S, Maekawa N, Tamura H, Tokura S, Shiono M, Monde K, Nishimura S.

Biomacromolecules. 2004 May-Jun;5(3):828-33.

PMID:
15132668
14.

Microstructural, mechanical, and histological evaluation of modified alginate-based scaffolds.

de la Portilla F, Pereira S, Molero M, De Marco F, Perez-Puyana V, Guerrero A, Romero A.

J Biomed Mater Res A. 2016 Dec;104(12):3107-3114. doi: 10.1002/jbm.a.35857. Epub 2016 Aug 21.

PMID:
27506966
15.

Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering.

Sajesh KM, Jayakumar R, Nair SV, Chennazhi KP.

Int J Biol Macromol. 2013 Nov;62:465-71. doi: 10.1016/j.ijbiomac.2013.09.028. Epub 2013 Sep 27.

PMID:
24080452
16.

Chitosan silk-based three-dimensional scaffolds containing gentamicin-encapsulated calcium alginate beads for drug administration and blood compatibility.

Mehta AS, Singh BK, Singh N, Archana D, Snigdha K, Harniman R, Rahatekar SS, Tewari RP, Dutta PK.

J Biomater Appl. 2015 Apr;29(9):1314-25. doi: 10.1177/0885328214563148. Epub 2014 Dec 9.

PMID:
25492055
17.

Control of the properties of porous chitosan-alginate membranes through the addition of different proportions of Pluronic F68.

Bueno CZ, Dias AM, de Sousa HJ, Braga ME, Moraes AM.

Mater Sci Eng C Mater Biol Appl. 2014 Nov;44:117-25. doi: 10.1016/j.msec.2014.08.014. Epub 2014 Aug 10.

PMID:
25280687
18.

Electrospun chitosan-alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds.

Jeong SI, Krebs MD, Bonino CA, Samorezov JE, Khan SA, Alsberg E.

Tissue Eng Part A. 2011 Jan;17(1-2):59-70. doi: 10.1089/ten.TEA.2010.0086. Epub 2010 Sep 21.

PMID:
20672984
19.

Transition of mechanical property of porous alginate scaffold with cells during culture period.

Sakai S, Masuhara H, Yamada Y, Ono T, Ijima H, Kawakami K.

J Biosci Bioeng. 2005 Jul;100(1):127-9.

PMID:
16233864
20.

In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering.

Jin HH, Kim DH, Kim TW, Shin KK, Jung JS, Park HC, Yoon SY.

Int J Biol Macromol. 2012 Dec;51(5):1079-85. doi: 10.1016/j.ijbiomac.2012.08.027. Epub 2012 Aug 30.

PMID:
22959955

Supplemental Content

Support Center