Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 63

1.

Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming.

Larocca F, Chiu SJ, McNabb RP, Kuo AN, Izatt JA, Farsiu S.

Biomed Opt Express. 2011 Jun 1;2(6):1524-38. doi: 10.1364/BOE.2.001524. Epub 2011 May 12.

2.

Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation.

Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S.

Opt Express. 2010 Aug 30;18(18):19413-28. doi: 10.1364/OE.18.019413.

3.

Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology.

Srinivasan PP, Heflin SJ, Izatt JA, Arshavsky VY, Farsiu S.

Biomed Opt Express. 2014 Jan 7;5(2):348-65. doi: 10.1364/BOE.5.000348. eCollection 2014 Feb 1.

4.

Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema.

Chiu SJ, Allingham MJ, Mettu PS, Cousins SW, Izatt JA, Farsiu S.

Biomed Opt Express. 2015 Mar 9;6(4):1172-94. doi: 10.1364/BOE.6.001172. eCollection 2015 Apr 1.

5.

Obtaining Thickness Maps of Corneal Layers Using the Optimal Algorithm for Intracorneal Layer Segmentation.

Rabbani H, Kafieh R, Kazemian Jahromi M, Jorjandi S, Mehri Dehnavi A, Hajizadeh F, Peyman A.

Int J Biomed Imaging. 2016;2016:1420230. doi: 10.1155/2016/1420230. Epub 2016 May 9.

6.

An Automatic Algorithm for Segmentation of the Boundaries of Corneal Layers in Optical Coherence Tomography Images using Gaussian Mixture Model.

Jahromi MK, Kafieh R, Rabbani H, Dehnavi AM, Peyman A, Hajizadeh F, Ommani M.

J Med Signals Sens. 2014 Jul;4(3):171-80.

7.

Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming.

Chiu SJ, Toth CA, Bowes Rickman C, Izatt JA, Farsiu S.

Biomed Opt Express. 2012 May 1;3(5):1127-40. doi: 10.1364/BOE.3.001127. Epub 2012 Apr 26.

8.

Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images.

Chiu SJ, Izatt JA, O'Connell RV, Winter KP, Toth CA, Farsiu S.

Invest Ophthalmol Vis Sci. 2012 Jan 5;53(1):53-61. doi: 10.1167/iovs.11-7640.

PMID:
22039246
9.

Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

Tian J, Marziliano P, Baskaran M, Tun TA, Aung T.

Biomed Opt Express. 2013 Mar 1;4(3):397-411. doi: 10.1364/BOE.4.000397. Epub 2013 Feb 11.

10.

Automatic segmentation of choroidal thickness in optical coherence tomography.

Alonso-Caneiro D, Read SA, Collins MJ.

Biomed Opt Express. 2013 Nov 11;4(12):2795-812. doi: 10.1364/BOE.4.002795. eCollection 2013.

11.

Fast segmentation of anterior segment optical coherence tomography images using graph cut.

Williams D, Zheng Y, Bao F, Elsheikh A.

Eye Vis (Lond). 2015 Jan 22;2:1. doi: 10.1186/s40662-015-0011-9. eCollection 2015.

12.

Automatic biometry of the anterior segment during accommodation imaged by optical coherence tomography.

Zhu D, Shao Y, Leng L, Xu Z, Wang J, Lu F, Shen M.

Eye Contact Lens. 2014 Jul;40(4):232-8. doi: 10.1097/ICL.0000000000000043.

PMID:
24901975
13.

Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.

Fang L, Cunefare D, Wang C, Guymer RH, Li S, Farsiu S.

Biomed Opt Express. 2017 Apr 27;8(5):2732-2744. doi: 10.1364/BOE.8.002732. eCollection 2017 May 1.

14.

Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint.

Niu S, Chen Q, de Sisternes L, Rubin DL, Zhang W, Liu Q.

Comput Biol Med. 2014 Nov;54:116-28. doi: 10.1016/j.compbiomed.2014.08.028. Epub 2014 Sep 6.

PMID:
25240102
15.

Automatic segmentation of the central epithelium imaged with three optical coherence tomography devices.

Ge L, Shen M, Tao A, Wang J, Dou G, Lu F.

Eye Contact Lens. 2012 May;38(3):150-7. doi: 10.1097/ICL.0b013e3182499b64.

PMID:
22415151
16.

Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.

Hu Z, Medioni GG, Hernandez M, Hariri A, Wu X, Sadda SR.

Invest Ophthalmol Vis Sci. 2013 Dec 30;54(13):8375-83. doi: 10.1167/iovs.13-12552.

PMID:
24265015
17.

Anterior segment imaging: Fourier-domain optical coherence tomography versus time-domain optical coherence tomography.

Wylegała E, Teper S, Nowińska AK, Milka M, Dobrowolski D.

J Cataract Refract Surg. 2009 Aug;35(8):1410-4. doi: 10.1016/j.jcrs.2009.03.034.

PMID:
19631129
18.

[Automated segmentation of retina layer structures on optical coherence tomography].

Gao Y, Li Y, Wang L, Zhang M.

Zhongguo Yi Liao Qi Xie Za Zhi. 2014 Mar;38(2):94-7, 101. Chinese.

PMID:
24941769
19.

Retina layer segmentation using kernel graph cuts and continuous max-flow.

Kaba D, Wang Y, Wang C, Liu X, Zhu H, Salazar-Gonzalez AG, Li Y.

Opt Express. 2015 Mar 23;23(6):7366-84. doi: 10.1364/OE.23.007366.

PMID:
25837079
20.

Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans.

Pilch M, Wenner Y, Strohmayr E, Preising M, Friedburg C, Meyer Zu Bexten E, Lorenz B, Stieger K.

Biomed Opt Express. 2012 Jul 1;3(7):1478-91. doi: 10.1364/BOE.3.001478. Epub 2012 Jun 4.

Supplemental Content

Support Center