Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 230

1.

Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy.

Gao B, Hartland G, Fang T, Kelly M, Jena D, Xing HG, Huang L.

Nano Lett. 2011 Aug 10;11(8):3184-9. doi: 10.1021/nl201397a. Epub 2011 Jun 29.

PMID:
21696177
2.

Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene.

Huang L, Hartland GV, Chu LQ, Luxmi, Feenstra RM, Lian C, Tahy K, Xing H.

Nano Lett. 2010 Apr 14;10(4):1308-13. doi: 10.1021/nl904106t.

PMID:
20210348
3.

Hot phonon dynamics in graphene.

Wu S, Liu WT, Liang X, Schuck PJ, Wang F, Shen YR, Salmeron M.

Nano Lett. 2012 Nov 14;12(11):5495-9. doi: 10.1021/nl301997r. Epub 2012 Nov 1.

PMID:
23106146
4.

Hot phonons in an electrically biased graphene constriction.

Chae DH, Krauss B, von Klitzing K, Smet JH.

Nano Lett. 2010 Feb 10;10(2):466-71. doi: 10.1021/nl903167f.

PMID:
20041665
5.

Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.

Shang J, Yu T, Lin J, Gurzadyan GG.

ACS Nano. 2011 Apr 26;5(4):3278-83. doi: 10.1021/nn200419z. Epub 2011 Mar 16.

PMID:
21391596
6.

Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers.

Berciaud S, Ryu S, Brus LE, Heinz TF.

Nano Lett. 2009 Jan;9(1):346-52. doi: 10.1021/nl8031444.

PMID:
19099462
7.

Transient absorption microscopy studies of energy relaxation in graphene oxide thin film.

Murphy S, Huang L.

J Phys Condens Matter. 2013 Apr 10;25(14):144203. doi: 10.1088/0953-8984/25/14/144203. Epub 2013 Mar 11.

PMID:
23478941
8.

Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene.

Graham MW, Shi SF, Wang Z, Ralph DC, Park J, McEuen PL.

Nano Lett. 2013;13(11):5497-502. doi: 10.1021/nl4030787. Epub 2013 Oct 23.

PMID:
24124889
9.

Phonon dispersion of quasi-freestanding graphene on Pt(111).

Politano A, Marino AR, Chiarello G.

J Phys Condens Matter. 2012 Mar 14;24(10):104025. doi: 10.1088/0953-8984/24/10/104025. Epub 2012 Feb 21.

PMID:
22354008
10.

Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.

Deng Z, Klimov NN, Solares SD, Li T, Xu H, Cannara RJ.

Langmuir. 2013 Jan 8;29(1):235-43. doi: 10.1021/la304079a. Epub 2012 Dec 18.

PMID:
23215163
11.

Two-dimensional phonon transport in supported graphene.

Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L.

Science. 2010 Apr 9;328(5975):213-6. doi: 10.1126/science.1184014.

12.

Hot electron injection from graphene quantum dots to TiO₂.

Williams KJ, Nelson CA, Yan X, Li LS, Zhu X.

ACS Nano. 2013 Feb 26;7(2):1388-94. doi: 10.1021/nn305080c. Epub 2013 Jan 30.

PMID:
23347000
13.

Optical Generation and Detection of Local Nonequilibrium Phonons in Suspended Graphene.

Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L.

Nano Lett. 2017 Mar 8;17(3):2049-2056. doi: 10.1021/acs.nanolett.7b00110. Epub 2017 Feb 22.

PMID:
28218545
14.

Defect-induced supercollision cooling of photoexcited carriers in graphene.

Alencar TV, Silva MG, Malard LM, de Paula AM.

Nano Lett. 2014 Oct 8;14(10):5621-4. doi: 10.1021/nl502163d. Epub 2014 Sep 16.

PMID:
25211670
15.

Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy.

Strait JH, Wang H, Shivaraman S, Shields V, Spencer M, Rana F.

Nano Lett. 2011 Nov 9;11(11):4902-6. doi: 10.1021/nl202800h. Epub 2011 Oct 14.

PMID:
21973122
16.

Isotopic effect on the vibrational lifetime of the carbon-deuterium stretch excitation on graphene.

Sakong S, Kratzer P.

J Chem Phys. 2011 Sep 21;135(11):114506. doi: 10.1063/1.3637040.

PMID:
21950870
17.

Coherent optical phonons of ZnO under near resonant photoexcitation.

Ishioka K, Petek H, Kaydashev VE, Kaidashev EM, Misochko OV.

J Phys Condens Matter. 2010 Nov 24;22(46):465803. doi: 10.1088/0953-8984/22/46/465803. Epub 2010 Nov 5.

PMID:
21403377
18.

Raman spectroscopy of ripple formation in suspended graphene.

Chen CC, Bao W, Theiss J, Dames C, Lau CN, Cronin SB.

Nano Lett. 2009 Dec;9(12):4172-6. doi: 10.1021/nl9023935.

PMID:
19807131
19.

Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).

Cong C, Yu T, Saito R, Dresselhaus GF, Dresselhaus MS.

ACS Nano. 2011 Mar 22;5(3):1600-5. doi: 10.1021/nn200010m. Epub 2011 Feb 23.

PMID:
21344883
20.

Studies of electron-phonon and phonon-phonon interactions in InN using ultrafast Raman spectroscopy.

Tsen KT, Ferry DK.

J Phys Condens Matter. 2009 Apr 29;21(17):174202. doi: 10.1088/0953-8984/21/17/174202. Epub 2009 Apr 1.

PMID:
21825406

Supplemental Content

Support Center