Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 108

1.

Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis.

Goodwin SB, M'barek SB, Dhillon B, Wittenberg AH, Crane CF, Hane JK, Foster AJ, Van der Lee TA, Grimwood J, Aerts A, Antoniw J, Bailey A, Bluhm B, Bowler J, Bristow J, van der Burgt A, Canto-Canché B, Churchill AC, Conde-Ferràez L, Cools HJ, Coutinho PM, Csukai M, Dehal P, De Wit P, Donzelli B, van de Geest HC, van Ham RC, Hammond-Kosack KE, Henrissat B, Kilian A, Kobayashi AK, Koopmann E, Kourmpetis Y, Kuzniar A, Lindquist E, Lombard V, Maliepaard C, Martins N, Mehrabi R, Nap JP, Ponomarenko A, Rudd JJ, Salamov A, Schmutz J, Schouten HJ, Shapiro H, Stergiopoulos I, Torriani SF, Tu H, de Vries RP, Waalwijk C, Ware SB, Wiebenga A, Zwiers LH, Oliver RP, Grigoriev IV, Kema GH.

PLoS Genet. 2011 Jun;7(6):e1002070. doi: 10.1371/journal.pgen.1002070.

2.

The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola.

Dhillon B, Gill N, Hamelin RC, Goodwin SB.

BMC Genomics. 2014 Dec 17;15:1132. doi: 10.1186/1471-2164-15-1132.

3.

Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola.

Stukenbrock EH, Jørgensen FG, Zala M, Hansen TT, McDonald BA, Schierup MH.

PLoS Genet. 2010 Dec 23;6(12):e1001189. doi: 10.1371/journal.pgen.1001189.

4.

Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat.

Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE, Thomma BP, Rudd JJ.

Plant Physiol. 2011 Jun;156(2):756-69. doi: 10.1104/pp.111.176347.

5.

Mycosphaerella graminicola: from genomics to disease control.

Orton ES, Deller S, Brown JK.

Mol Plant Pathol. 2011 Jun;12(5):413-24. doi: 10.1111/j.1364-3703.2010.00688.x.

PMID:
21535348
8.

Analysis of cytochrome b(5) reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence.

Derbyshire MC, Michaelson L, Parker J, Kelly S, Thacker U, Powers SJ, Bailey A, Hammond-Kosack K, Courbot M, Rudd J.

Fungal Genet Biol. 2015 Sep;82:69-84. doi: 10.1016/j.fgb.2015.05.008.

9.

Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition.

Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J, Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA, Courbot M.

Plant Physiol. 2015 Mar;167(3):1158-85. doi: 10.1104/pp.114.255927.

10.

Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola.

Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE.

PLoS One. 2012;7(12):e49904. doi: 10.1371/journal.pone.0049904.

11.

Large-scale gene discovery in the septoria tritici blotch fungus Mycosphaerella graminicola with a focus on in planta expression.

Kema GH, van der Lee TA, Mendes O, Verstappen EC, Lankhorst RK, Sandbrink H, van der Burgt A, Zwiers LH, Csukai M, Waalwijk C.

Mol Plant Microbe Interact. 2008 Sep;21(9):1249-60. doi: 10.1094/MPMI-21-9-1249.

12.

Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola.

Wittenberg AH, van der Lee TA, Ben M'barek S, Ware SB, Goodwin SB, Kilian A, Visser RG, Kema GH, Schouten HJ.

PLoS One. 2009 Jun 10;4(6):e5863. doi: 10.1371/journal.pone.0005863.

13.

Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota.

Gurung S, Goodwin SB, Kabbage M, Bockus WW, Adhikari TB.

Phytopathology. 2011 Oct;101(10):1251-9. doi: 10.1094/PHYTO-08-10-0212.

14.

Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph Septoria tritici).

Keon J, Antoniw J, Rudd J, Skinner W, Hargreaves J, Hammond-Kosack K.

Fungal Genet Biol. 2005 May;42(5):376-89.

PMID:
15809003
15.

Previous bottlenecks and future solutions to dissecting the Zymoseptoria tritici-wheat host-pathogen interaction.

Rudd JJ.

Fungal Genet Biol. 2015 Jun;79:24-8. doi: 10.1016/j.fgb.2015.04.005. Review.

17.

Chromosomal location of a race-specific resistance gene to Mycosphaerella graminicola in the spring wheat ST6.

McCartney CA, Brûlé-Babel AL, Lamari L, Somers DJ.

Theor Appl Genet. 2003 Nov;107(7):1181-6.

PMID:
12898022
18.

BOTH MAT1-1 AND MAT1-2 MATING TYPES OF MYCOSPHAERELLA GRAMINICOLA OCCUR AT EQUAL FREQUENCIES IN ALGERIA.

Allioui N, Siah A, Brinis L, Reignault P, Halama P.

Commun Agric Appl Biol Sci. 2014;79(3):469-72.

PMID:
26080482
19.

Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat.

Lee WS, Rudd JJ, Hammond-Kosack KE, Kanyuka K.

Mol Plant Microbe Interact. 2014 Mar;27(3):236-43. doi: 10.1094/MPMI-07-13-0201-R.

20.

Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola.

Motteram J, Küfner I, Deller S, Brunner F, Hammond-Kosack KE, Nürnberger T, Rudd JJ.

Mol Plant Microbe Interact. 2009 Jul;22(7):790-9. doi: 10.1094/MPMI-22-7-0790.

Supplemental Content

Support Center