Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches.

Milekhin AG, Meijers RJ, Richter T, Calarco R, Montanari S, Lüth H, Paez Sierra BA, Zahn DR.

J Phys Condens Matter. 2006 Jul 5;18(26):5825-34. doi: 10.1088/0953-8984/18/26/003. Epub 2006 Jun 16.

PMID:
21690799
2.

Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns.

Kishino K, Ishizawa S.

Nanotechnology. 2015 Jun 5;26(22):225602. doi: 10.1088/0957-4484/26/22/225602. Epub 2015 May 12.

PMID:
25965011
3.

Selective area growth of In(Ga)N/GaN nanocolumns by molecular beam epitaxy on GaN-buffered Si(111): from ultraviolet to infrared emission.

Albert S, Bengoechea-Encabo A, Sánchez-García MA, Kong X, Trampert A, Calleja E.

Nanotechnology. 2013 May 3;24(17):175303. doi: 10.1088/0957-4484/24/17/175303. Epub 2013 Apr 4.

PMID:
23558410
4.

A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering.

Kim JH, Kang T, Yoo SM, Lee SY, Kim B, Choi YK.

Nanotechnology. 2009 Jun 10;20(23):235302. doi: 10.1088/0957-4484/20/23/235302. Epub 2009 May 18.

PMID:
19448293
5.

Molecular-beam epitaxy-grown Si whisker structures: morphological, optical and electrical properties.

Naumova OV, Nastaushev YV, Svitasheva SN, Sokolov LV, Zakharov ND, Werner P, Gavrilova TA, Dultsev FN, Aseev AL.

Nanotechnology. 2008 Jun 4;19(22):225708. doi: 10.1088/0957-4484/19/22/225708. Epub 2008 Apr 28.

PMID:
21825775
6.

Polarity determination by electron energy-loss spectroscopy: application to ultra-small III-nitride semiconductor nanocolumns.

Kong X, Ristić J, Sanchez-Garcia MA, Calleja E, Trampert A.

Nanotechnology. 2011 Oct 14;22(41):415701. doi: 10.1088/0957-4484/22/41/415701. Epub 2011 Sep 14.

PMID:
21914935
7.

Optical properties of GaN nanorods grown by molecular-beam epitaxy; dependence on growth time.

Park CM, Park YS, Im H, Kang TW.

Nanotechnology. 2006 Feb 28;17(4):952-5. doi: 10.1088/0957-4484/17/4/019. Epub 2006 Jan 30.

PMID:
21727365
8.

Microstructural and compositional characteristics of GaN films grown on a ZnO-buffered Si (111) wafer.

Luo XH, Wang RM, Zhang XP, Zhang HZ, Yu DP, Luo MC.

Micron. 2004;35(6):475-80.

PMID:
15120133
9.

Physical and electrical properties of chemical vapor grown GaN Nano/microstructures.

Li J, Liu J, Wang LS, Chang RP.

Inorg Chem. 2008 Nov 17;47(22):10325-9. doi: 10.1021/ic702427u. Epub 2008 Oct 18.

PMID:
18928279
10.

The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements.

Thillosen N, Sebald K, Hardtdegen H, Meijers R, Calarco R, Montanari S, Kaluza N, Gutowski J, Lüth H.

Nano Lett. 2006 Apr;6(4):704-8.

PMID:
16608268
11.

Abnormal photoluminescence properties of GaN nanorods grown on Si(111) by molecular-beam epitaxy.

Park YS, Kang TW, Taylor RA.

Nanotechnology. 2008 Nov 26;19(47):475402. doi: 10.1088/0957-4484/19/47/475402. Epub 2008 Oct 29.

PMID:
21836271
12.

Vertically Oriented Growth of GaN Nanorods on Si Using Graphene as an Atomically Thin Buffer Layer.

Heilmann M, Munshi AM, Sarau G, Göbelt M, Tessarek C, Fauske VT, van Helvoort AT, Yang J, Latzel M, Hoffmann B, Conibeer G, Weman H, Christiansen S.

Nano Lett. 2016 Jun 8;16(6):3524-32. doi: 10.1021/acs.nanolett.6b00484. Epub 2016 May 3.

PMID:
27124605
13.

Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes.

Carnevale SD, Kent TF, Phillips PJ, Sarwar AT, Selcu C, Klie RF, Myers RC.

Nano Lett. 2013 Jul 10;13(7):3029-35. doi: 10.1021/nl400200g. Epub 2013 Jun 17.

PMID:
23756087
14.

Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays.

Yu Q, Guan P, Qin D, Golden G, Wallace PM.

Nano Lett. 2008 Jul;8(7):1923-8. doi: 10.1021/nl0806163. Epub 2008 Jun 19.

PMID:
18563939
15.

Structure Shift of GaN Among Nanowall Network, Nanocolumn, and Compact Film Grown on Si (111) by MBE.

Zhong A, Fan P, Zhong Y, Zhang D, Li F, Luo J, Xie Y, Hane K.

Nanoscale Res Lett. 2018 Feb 13;13(1):51. doi: 10.1186/s11671-018-2461-1.

16.

Heteroepitaxial decoration of Ag nanoparticles on Si nanowires: a case study on Raman scattering and mapping.

Peng Z, Hu H, Utama MI, Wong LM, Ghosh K, Chen R, Wang S, Shen Z, Xiong Q.

Nano Lett. 2010 Oct 13;10(10):3940-7. doi: 10.1021/nl101704p.

PMID:
20795630
17.

[Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].

Zhai XF, Mu C, Xu DS, Tong LM, Zhu T, Du WM.

Guang Pu Xue Yu Guang Pu Fen Xi. 2008 Oct;28(10):2329-32. Chinese.

PMID:
19123400
18.

Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates.

Li Z, Tong WM, Stickle WF, Neiman DL, Williams RS, Hunter LL, Talin AA, Li D, Brueck SR.

Langmuir. 2007 Apr 24;23(9):5135-8. Epub 2007 Mar 27.

PMID:
17385901
19.

Black silicon with high density and high aspect ratio nanowhiskers.

Kalem S, Werner P, Arthursson O, Talalaev V, Nilsson B, Hagberg M, Frederiksen H, Södervall U.

Nanotechnology. 2011 Jun 10;22(23):235307. doi: 10.1088/0957-4484/22/23/235307. Epub 2011 Apr 12.

PMID:
21483090
20.

Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy.

Tian C, Liu Z, Jin J, Lebedkin S, Huang C, You H, Liu R, Wang L, Song X, Ding B, Barczewski M, Schimmel T, Fang J.

Nanotechnology. 2012 Apr 27;23(16):165604. doi: 10.1088/0957-4484/23/16/165604. Epub 2012 Apr 2.

PMID:
22469765

Supplemental Content

Support Center